Экология

электронный учебно-методический комплекс

Тема 2.4. Вода и минеральные соли

Для обитателей суши особенно важны проблемы водообеспечения. Особенности поддержания водного баланса зависят от того, в какой экологической обстановке они живут, какой образ жизни ведут, насколько могут использовать различные источники влаги и задерживать воду в теле.

Адаптация растений к поддержанию водного баланса. Низшие наземные растения из влажного субстрата поглощают воду погруженными в него частями таллома, а влагу дождя, росы и тумана – всей поверхностью. В максимально набухшем состоянии лишайники содержат в 20–30 раз больше воды, чем сухого вещества.

Среди высших наземных растений мохообразные поглощают воду из почвы ризоидами, а большинство других – корнями, специализированными органами, всасывающими воду. В клетках корня развивается сосущая сила чаще всего в несколько атмосфер, но этого достаточно для извлечения из почвы большей части связанной воды. Лесные деревья умеренной зоны развивают сосущую силу корней около 3 • 106 Па (30 атм), некоторые травянистые растения (земляника лесная, медуница неясная) – до 2 • 106 (20 атм) и даже свыше 4 • 106 Па (40 атм) (смолка обыкновенная); растения сухих областей – до 60 атм.

Когда в непосредственной близости от корней запасы воды в почве истощаются, корни растут в направлении большей влажности, так что корневая система растений постоянно находится в движении. У степных и пустынных растений часто можно видеть эфемерные корни, быстро вырастающие в периоды увлажнения почвы, а с наступлением засушливого периода засыхающие.

По типу ветвления различают следующие корневые системы (рис. 60):

  • экстенсивная – охватывает большой объем почвы, но сравнительно слабо ветвится, так что почва пронизана корнями негусто. Таковы корневые системы у многих степных и пустынных растений (саксаула, верблюжьей колючки), у деревьев умеренной полосы (сосны обыкновенной, березы повислой), а из трав у люцерны серповидной, василька шероховатого и др.;
  • Интенсивная – охватывает сравнительно небольшой объем почвы, но густо пронизывает ее многочисленными сильно ветвящимися корнями, как, например, у степных дерновинных злаков (ковылей, типчака и др.), у ржи, пшеницы. Между этими типами корневых систем есть переходные.

Корневые системы очень пластичны и резко реагируют на изменение условий, в первую очередь увлажнения. При недостатке влаги корневая система становится экстенсивнее. Так, при выращивании ржи в разных условиях общая длина корней (без корневых волосков) в 1000 см3 почвы варьирует от 90 м до 13 км, а поверхность корневых волосков может увеличиться в 400 раз.

 Рис. 60 Корневые системы степных и тундровых растений (по М. С. Шалыту и Б. А. Тихомирову, 1963):
А – Festuca sulcata;
Б – Euphorbia gerardiana на черноземах в Аскания-Нова;
В – Eriophorum scheuchzeri;
Г – Hierochloe alpina – из тундр Таймыра











Рисунок 60 – Корневые системы степных и тундровых растений (по М. С. Шалыту и Б. А. Тихомирову, 1963): А – Festuca sulcata; Б – Euphorbia gerardiana на черноземах в Аскания-Нова; В – Eriophorum scheuchzeri; Г – Hierochloe alpina – из тундр Таймыра


Всасывание воды корнями затруднено при большой сухости почвы, засолении или сильной кислотности, при низкой температуре. Например, ясень обыкновенный при температуре почвы 0 0C поглощает воды в 3 раза меньше, чем при +(20–30) 0С. Способность поглощать воду при той или иной температуре зависит от приспособленности растений к тепловому режиму почв в местах их произрастания. Виды с ранним началом развития, как правило, могут всасывать воду корнями при более низкой температуре, чем развивающиеся позднее. Тундровые растения и некоторые деревья, растущие на почвах с подстилающей их многолетней мерзлотой, могут поглощать воду при температуре почвы 0 0C.

У высших растений есть и дополнительные пути поступления воды в тело. Мхи могут поглощать воду всей поверхностью, как и лишайники. Особенно много воды впитывают такие мхи, как кукушкин лен, виды сфагнума, чему способствует строение их листьев и побегов. При полном насыщении сфагновые мхи содержат в своем теле в десятки раз больше воды, чем в воздушно-сухом состоянии . Семена поглощают воду из почвы. Из воздуха, насыщенного водяными парами, в дождевом тропическом лесу поглощают воду многие эпифиты, например папоротник гименофиллум – тонкими листьями, многие орхидеи – воздушными корнями. В чашевидных влагалищах листьев многих зонтичных скапливается вода, которая постепенно всасывается эпидермисом. Виды из рода тилляндсия (бромелиевые) существуют в пустыне Атакама практически исключительно за счет влаги туманов и росы, которую впитывают чешуевидные волоски на листьях.

Поступившая в растение вода транспортируется от клетки к клетке (ближний транспорт) и по ксилеме во все органы, где расходуется на жизненные процессы (дальний транспорт). В среднем 0,5 % воды идет на фотосинтез, а остальная – на восполнение потерь от испарения и поддержание тургора. Вода испаряется со всех поверхностей, как внутренних, так и наружных, соприкасающихся с воздухом. Различают устьичную, кутикулярную и перидермальную транспирацию.

Через устьица транспирируется влага, испарившаяся с поверхности клеток внутри органов. Это основной путь расходования воды растением. Кутикулярная транспирация составляет менее 10 % от свободного испарения; у вечнозеленых хвойных пород она сокращается до 0,5 %, а у кактусов даже до 0,05 %. Относительно велика кутикулярная транспирация молодых развертывающихся листьев. Перидермальная транспирация обычно незначительна. Интенсивность общей транспирации повышается с увеличением освещенности, температуры, сухости воздуха и при ветре.

Водный баланс остается уравновешенным в том случае, если поглощение воды, ее проведение и расходование гармонично согласованы друг с другом. Нарушения его могут быть кратковременными или длительными. По приспособлениям наземных растений к кратковременным колебаниям условий водоснабжения и испарения различают пойкилогидрические и гомойогидрические виды.

У пойкилогидрических растений содержание воды в тканях непостоянно и сильно зависит от степени увлажнения окружающей среды. Они не могут регулировать транспирацию и легко и быстро теряют и поглощают воду, используя влагу росы, туманов, кратковременных дождей, в сухом состоянии находятся в анабиозе. Способны обитать там, где короткие периоды увлажнения чередуются с длительными периодами сухости.

Пойкилогидричность свойственна цианобактериям, всем водорослям, некоторым грибам, лишайникам, а также ряду высших растений: многим мхам, некоторым папоротникам и даже отдельным цветковым, по-видимому, вторично перешедшим к пойкилогидрическому образу жизни. Таков, например, южно-африканский кустарник Myrothamnus flabel-lifolia (розоцветные).

В мелких клетках таллома большинства низших растений нет центральной вакуоли, поэтому при высыхании они равномерно сжимаются без необратимых изменений ультраструктуры протопласта. Сине–зеленые водоросли (цианобактерии), вегетирующие на поверхности почвы в пустыне, высыхая, превращаются в темную корочку. От редких дождей их слизистая масса набухает и нитчатые тела начинают вегетировать. Мхи, растущие на сухих скалах, стволах деревьев или на поверхности почвы лугов и степей (роды Thuidium, Tortula и др.), также могут сильно высыхать, не теряя жизнеспособности. Пойкилогидричны пыльцевые зерна и зародыши в семенах растений.

Гомойогидрические растения способны поддерживать относительное постоянство обводненности тканей. К ним относят большинство высших наземных растений. Для них характерна крупная центральная вакуоль в клетках. Благодаря этому клетка всегда имеет запас воды и не так сильно зависит от изменчивых внешних условий. Кроме того, побеги покрыты с поверхности эпидермой с малопроницаемой для воды кутикулой, транспирация регулируется устьичным аппаратом, а хорошо развитая корневая система во время вегетации может непрерывно поглощать влагу из почвы. Однако способности растений, не выдерживающих высыхания, регулировать свой водный обмен различны. Среди них выделяют разные по экологии группы.

Гидатофиты – это водные растения, целиком или почти целиком погруженные в воду. Среди них – цветковые, которые вторично перешли к водному образу жизни (элодея, рдесты, водяные лютики, валлиснерия, уруть и др.). Вынутые из воды, эти растения быстро высыхают и погибают. У них редуцированы устьица и нет кутикулы. Транспирация у таких растений отсутствует, а вода выделяется через особые клетки – гидатоды.

Листовые пластинки у гидатофитов, как правило, тонкие, без дифференцировки мезофилла, часто рассеченные, что способствует более полному использованию ослабленного в воде солнечного света и усвоению СО2. Нередко выражена разнолистность – гетерофиллия; у многих видов есть плавающие листья, имеющие световую структуру. Поддерживаемые водой побеги часто не имеют механических тканей, в них хорошо развита аэренхима.

Корневая система цветковых гидатофитов сильно редуцирована, иногда отсутствует совсем или утратила свои основные функции (у рясок). Поглощение воды и минеральных солей происходит всей поверхностью тела. Цветоносные побеги, как правило, выносят цветки над водой (реже опыление совершается в воде), а после опыления побеги снова могут погружаться, и созревание плодов происходит под водой (валлиснерия, элодея, рдесты и др.).

Гидрофиты – это растения наземно-водные, частично погруженные в воду, растущие по берегам водоемов, на мелководьях, на болотах. Встречаются в районах с самыми разными климатическими условиями. К ним можно отнести тростник обыкновенный, частуху подорожниковую, вахту трехлистную, калужницу болотную и другие виды. У них лучше, чем у гидатофитов, развиты проводящие и механические ткани. Хорошо выражена аэренхима. В аридных районах при сильной инсоляции их листья имеют световую структуру. У гидрофитов есть эпидерма с устьицами, интенсивность транспирации очень высока, и они могут расти только при постоянном интенсивном поглощении воды.

Гигрофиты – наземные растения, живущие в условиях повышенной влажности воздуха и часто на влажных почвах. Среди них различают теневые и световые. Теневые гигрофиты – это растения нижних ярусов сырых лесов в разных климатических зонах (недотрога, цирцея альпийская, бодяк огородный, многие тропические травы и т. п.). Из-за высокой влажности воздуха у них может быть затруднена транспирация, поэтому для улучшения водного обмена на листьях развиваются гидатоды, или водяные устьица, выделяющие капельно–жидкую воду. Листья часто тонкие, с теневой структурой, со слабо развитой кутикулой, содержат много свободной и малосвязанной воды. Обводненность тканей достигает 80 % и более. При наступлении даже непродолжительной и несильной засухи в тканях создается отрицательный водный баланс, растения завядают и могут погибнуть.

К световым гигрофитам относятся виды открытых местообитаний, растущие на постоянно влажных почвах и во влажном воздухе (папирус, рис, сердечники, подмаренник болотный, росянка и др.). Переходные группы – мезогигрофиты и гигромезофиты .

Мезофиты могут переносить непродолжительную и не очень сильную засуху. Это растения, произрастающие при среднем увлажнении, умеренно теплом режиме и достаточно хорошей обеспеченности минеральным питанием. К мезофитам можно отнести вечнозеленые деревья верхних ярусов тропических лесов, листопадные деревья саванн, древесные породы влажных вечнозеленых субтропических лесов, летнезеленые лиственные породы лесов умеренного пояса, кустарники подлеска, травянистые растения дубравного широкотравья, растения заливных и не слишком сухих суходольных лугов, пустынные эфемеры и эфемероиды, многие сорные и большинство культурных растений. Из приведенного перечня видно, что группа мезофитов очень обширна и неоднородна. По способности регулировать свой водный обмен одни приближаются к гигрофитам (мезогигрофиты ), другие – к засухоустойчивым формам (мезоксерофиты ).

Мезофиты подразделяются на 5 групп:

  1. Вечно–зеленые мезофиты – в основном деревья и кустарники влажных тропиков.
  2. Зимне–зеленые деревянистые мезофиты – тропические и субтропические виды, сбрасывающие листву и впадающие в неактивное состояние в сухие периоды.
  3. Летне–зеленые деревянистые мезофиты – деревья и кустарники умеренной зоны, сбрасывающие листву и впадающие в оцепенение в зимнее время.
  4. Летне–зеленые травянистые мезофиты – надземные части, кроме почек возобновления, отмирают к зиме.
  5. Эфемеры и эфемероиды – обитают в аридных районах, вегетируют в течение короткого влажного периода.

Эфемеры – однолетние растения с очень коротким жизненным циклом. Массовое развитие начинается ранней весной и завершается до начала летней засухи.

Эфемероиды – многолетние раннецветущие травянистые растения, у которых летом надземные побеги полностью отмирают, остаются лишь подземные запасающие органы с почками (луковицы, клубни, корневища). В Средней России эфемероиды характерны для широколиственных лесов, где используют для вегетации влажный и светлый период до распускания листьев на деревьях (рис. 61).

 Рис. 61 Эфемероид. Гусиный лук желтый (Gagea lutea (L.) Ker-Gawl)











Рисунок 61 – Эфемероид. Гусиный лук желтый (Gagea lutea (L.) Ker–Gawl)


Ксерофиты растут в местах с недостаточным увлажнением и имеют приспособления, позволяющие добывать воду при ее недостатке, ограничивать испарение воды или запасать ее на время засухи. Ксерофиты лучше, чем все другие растения, способны регулировать водный обмен, поэтому и во время продолжительной засухи остаются в активном состоянии. Это растения пустынь, степей, жестколистных вечнозеленых лесов и кустарниковых зарослей, песчаных дюн.

Ксерофиты подразделяются на два основных типа: суккуленты и склерофиты.

Суккуленты – сочные растения с сильно развитой водозапасающей паренхимой в разных органах. Стеблевые суккуленты – кактусы, стапелии, кактусовидные молочаи; листовые суккуленты – алоэ, агавы, мезембриантемумы, молодило, очитки; корневые суккуленты – аспарагус. В пустынях Центральной Америки и Южной Африки суккуленты могут определять облик ландшафта.

Листья, а в случае их редукции стебли суккулентов имеют толстую кутикулу, часто мощный восковой налет или густое опушение. Устьица погруженные, открываются в щель, где задерживаются водяные пары. Днем они закрыты. Это помогает суккулентам сберегать накопленную влагу, но зато ухудшает газообмен, затрудняет поступление СО2 внутрь растения. Поэтому многие суккуленты из семейств лилейных, бромелиевых, кактусовых, толстянковых ночью при открытых устьицах поглощают СО2, который только на следующий день перерабатывают в процессе фотосинтеза. Поглощенный СО2 переводится в малат. Кроме того, при дыхании ночью углеводы разлагаются не до углекислого газа, а до органических кислот, которые отводятся в клеточный сок. Днем на свету малат и другие органические кислоты расщепляются с выделением СО2, который используется в процессе фотосинтеза. Таким образом, крупные вакуоли с клеточным соком запасают не только воду, но и СО2. Так как у суккулентов ночная фиксация углекислоты и переработка ее днем в ходе фотосинтеза разделены во времени, они обеспечивают себя углеродом, не подвергаясь риску чрезмерной потери воды, но масштабы поступления углекислого газа при таком способе невелики, и растут суккуленты медленно.

Осмотическое давление клеточного сока суккулентов мало – всего 3 • 105 – 8 • 105 Па (3–8 атм), они развивают небольшую сосущую силу и способны всасывать воду лишь атмосферных осадков, просочившихся в верхний слой почвы. Корневая система их неглубокая, но сильно распростертая, что особенно характерно для кактусов. Кактус Cereus не получая воды в течение 2–х лет теряет за это время лишь 13 % массы, за три года – 36 %.

Склерофиты – это растения, наоборот, сухие на вид, часто с узкими и мелкими листьями, иногда свернутыми в трубочку. Листья могут быть также рассеченными, покрытыми волосками или восковым налетом. Хорошо развита склеренхима, поэтому растения без вредных последствий могут терять до 25 % влаги не завядая. В клетках преобладает связанная вода. Сосущая сила корней до нескольких десятков атмосфер, что позволяет успешно добывать воду из почвы. При недостатке воды резко снижают транспирацию. Склерофиты можно подразделить на две группы: эуксерофитов и стипаксерофитов.

К эуксерофитам относятся многие степные растения с розеточными и полурозеточными, сильно опушенными побегами, полукустарнички, некоторые злаки, полынь холодная, эдельвейс эдельвейсовидный и др. Наибольшую биомассу эти растения создают в период, благоприятный для вегетации, а в жару уровень обменных процессов у них очень низок.

Стипаксерофиты – это группа узколистных дерновинных злаков (ковыли, тонконоги, типчак и др.). Характеризуются низкой транспирацией в засушливый период и могут переносить особенно сильное обезвоживание тканей. Свернутые в трубочку листья имеют внутри влажную камеру. Транспирация идет через погруженные в бороздки устьица внутрь этой камеры, что снижает потери влаги.

Кроме названных экологических групп растений, выделяют еще целый ряд смешанных или промежуточных типов.

Различные пути регуляции водообмена позволили растениям заселить самые различные по экологическим условиям участки суши. Многообразие приспособлений лежит, таким образом, в основе распространения растений по поверхности земли, где дефицит влаги является одной из главных проблем экологических адаптаций.

Водный баланс наземных животных. Животные получают воду тремя основными путями: через питье, вместе с сочной пищей и в результате метаболизма, т. е. за счет окисления и расщепления органических веществ – жиров, белков и углеводов.

Некоторые животные могут впитывать воду через покровы из влажного субстрата или воздуха, например личинки некоторых насекомых – мучного хрущака, жуков-щелкунов и др.

Потери воды у животных происходят через испарение покровами или со слизистых оболочек дыхательных путей, путем выведения из тела мочи и непереваренных остатков пищи.

Хотя животные могут выдерживать кратковременные потери воды, но в целом расход ее должен возмещаться приходом. Потери воды приводят к гибели скорее, чем голодание. Виды, получающие воду в основном через питье, сильно зависят от наличия водопоев. Это особенно характерно для крупных млекопитающих. В сухих, аридных районах такие животные совершают иногда значительные миграции к водоемам и не могут существовать слишком далеко от них. В африканских саваннах слоны, антилопы, львы, гиены регулярно посещают водопои.

В питьевой воде нуждаются и многие птицы. Ласточки и стрижи пьют на лету, проносясь над поверхностью водоема. Рябки в пустынях ежедневно совершают многокилометровые перелеты к водопоям и приносят воду птенцам. Самцы рябков используют исключительный в своем роде способ переноса воды – они пропитывают ею оперение на груди, а птенцы отжимают клювами набухшие перья.

В то же время многие животные могут обходиться совсем без питьевой воды, получая влагу иными способами.

Влажность воздуха также очень важна для животных, так как от нее зависит величина испарения с поверхности тела. Потери воды через испарение обусловлены также строением покровов. Некоторые виды не могут обитать в сухом воздухе и нуждаются в полном насыщении его водяными парами. Другие без вреда для себя населяют самые засушливые районы.

Среди ряда групп животных можно выделить гигрофилов и ксерофилов, т. е. влаголюбивые и сухолюбивые виды. Промежуточную группу составляют мезофилы . Среди насекомых, например, гигрофильны кровососущие комары, которые активны преимущественно в вечерние и утренние часы, а днем – либо в пасмурную погоду, либо только в тени, под пологом леса, т. е. при повышенной влажности воздуха. Ксерофильны жуки-скакуны, пустынные жуки–чернотелки, пустынная саранча и др.

Способы регуляции водного баланса у животных разнообразнее, чем у растений. Их можно разделить на поведенческие, морфологические и физиологические .

К числу поведенческих приспособлений относятся поиски водопоев, выбор мест обитания, рытье нор и т. п. В норах влажность воздуха приближается к 100 %, даже когда на поверхности очень сухо. Это снижает необходимость испарения через покровы, экономит влагу в организме.

В эффективности поведенческих приспособлений для обеспечения водного баланса можно убедиться на примере пустынных мокриц. Мокрицы – типичные ракообразные, не отличающиеся особыми анатомо-морфологическими приспособлениями к наземному образу жизни. Тем не менее представители рода Hemilepistus освоили самые сухие и жаркие места на Земле – глинистые пустыни. Там они роют глубокие вертикальные норки, где всегда влажно, и покидают их, выходя на поверхность лишь в те часы суток, когда высока влажность приземного слоя воздуха. Когда почва иссушается особенно сильно и возникает угроза снижения влажности воздуха в норке, самки закрывают отверстие сильно склеротизованными передними сегментами тела, создавая замкнутое, насыщенное парами пространство и оберегая молодь от высыхания.

К морфологическим способам поддержания нормального водного баланса относятся образования, способствующие задержанию воды в теле: раковины наземных улиток, ороговевшие покровы рептилий, развитие эпикутикулы у насекомых и т. п. У пустынных жуков–чернотелок срастаются и прирастают к телу надкрылья, вторая пара крыльев редуцируется и между телом и надкрыльями образуется камера, куда выходят дыхальца насекомого. Эта камера открывается наружу лишь небольшой узкой щелью, воздух в ней насыщен водяными парами. Части тела, соприкасающиеся с внешней средой, защищены непроницаемой для воды эпикутикулой.

Физиологические приспособления к регуляции водного обмена – это способность к образованию метаболической влаги, экономии воды при выделении мочи и кала, развитие выносливости к обезвоживанию организма, величина потоотделения и отдачи воды со слизистых.

Выносливость к обезвоживанию, как правило, выше у животных, подвергающихся тепловым перегрузкам. Для человека потеря воды, превышающая 10 % массы тела, смертельна. Верблюды переносят потери воды до 27 %, овцы – до 23, собаки – до 17 %.

Экономия воды в пищеварительном тракте достигается всасыванием воды кишечником и продуцированием сухого кала. Содержание воды в испражнениях животных варьирует в зависимости от состава корма, но в целом отражает приспособленность к обитанию в разных условиях влажности. Например, на 100 г сухого помета коров на пастбище приходится 566 г воды, тогда как у верблюдов – 109, а при безводной диете – всего 76 г.

У насекомых, обитающих в аридных районах, выделительные органы – мальпигиевы сосуды – свободными концами входят в тесный контакт со стенкой задней кишки и всасывают воду из ее содержимого. Так вода вновь возвращается в организм (пустынные жуки–чернотелки, муравьиные львы, личинки божьих коровок и др.).

Для экономии воды, выводимой через почки, нужна перестройка азотного обмена. При распаде белков у большинства водных организмов образуется аммиак, который токсичен для цитоплазмы даже в малых концентрациях. На процесс его образования и выведения тратится много воды. У наземных животных аммиак присутствует среди продуктов обмена только у тех форм, которые обитают в условиях достаточного обеспечения водой, например у тлей, непрерывно питающихся соком растений. Основной компонент выделяемой мочи у наземных млекопитающих – мочевина. Это менее токсичный продукт обмена, который может накапливаться в плазме и полостных жидкостях и выводиться в более концентрированных растворах, что экономит воду. С мочой выводятся также различные соли. Общая концентрация мочи по сравнению с плазмой может служить показателем способности к экономии воды при экскреции. У человека моча концентрированнее плазмы в 4,2 раза, у овец – в 7,6, у верблюда – в 8, у тушканчиков – в 14 раз.

Чешуйчатые пресмыкающиеся и сухопутные черепахи – группы, освоившие наиболее аридные районы, – выделяют малорастворимую мочевую кислоту. Это же характерно для птиц и высших насекомых. Паукообразные выделяют гуанин. При образовании гуанина и мочевой кислоты затрачивается минимальное количество воды.

Жизнь за счет метаболической влаги доступна не всем животным. Окисление жиров требует большого количества кислорода, а дополнительная вентиляция легких в сухом воздухе сопровождается потерей водяных паров. Жир в горбах верблюдов не является для них основным источником водоснабжения, так как расход воды на усиленное дыхание при терморегуляции равен или даже превышает количество получаемой метаболической воды. Поэтому верблюды нуждаются в периодическом питье.

Мелкие млекопитающие, спасающиеся от жары в прохладных норах, могут покрывать значительную часть своих расходов воды в результате окислительных процессов, так как им не требуется дополнительно вода на терморегуляцию. Почти исключительно на сухом корме живут такие пустынные виды, как тушканчики, американская кенгуровая крыса, африканская песчанка и др. (рис. 62).

 Рис. 62 Животные, способные жить за счет метаболической влаги: 1 – пустынный мешотчатый прыгун; 2 – карликовая песчанка; 3 – жирнохвостый тушканчик (по В. Е. Соколову и др., 1977)











Рисунок 62 – Животные, способные жить за счет метаболической влаги: 1 – пустынный мешотчатый прыгун; 2 – карликовая песчанка; 3 – жирнохвостый тушканчик (по В. Е. Соколову и др., 1977)


Метаболическую воду в большей мере, чем позвоночные животные, могут использовать насекомые, так как трахейная система насекомых осуществляет эффективный воздушный дренаж с малыми потерями на испарение. У многих видов жировое тело служит преимущественно источником воды, а не энергетических запасов. Гусеницы платяной моли, мельничной огневки, амбарный и рисовый долгоносики и многие другие живут исключительно за счет сухой пищи.

Испарение, связанное с необходимостью терморегуляции, может служить причиной истощения водных ресурсов организма. В пустынях противостоять перегреву путем испарения воды могут только крупные животные. Общая тепловая нагрузка пропорциональна относительной поверхности и поэтому особенно велика для мелких форм. Для животного массой 100 г расход воды составил бы в час около 15 % от массы тела, а массой 10 г – около 30 %, т. е. за немногие часы была бы истрачена вся вода организма. Поэтому мелкие гомойотермные животные в сухом и жарком климате избегают воздействия жары и экономят влагу, укрываясь под землей.

У пойкилотермных повышение температуры тела вслед за нагреванием воздуха позволяет избегать излишних потерь воды, которая тратится у гомойотермных для поддержания постоянной температуры.

Преимущества колеблющейся температуры тела используют и животные с хорошей температурной регуляцией, специализированные к жизни в пустыне. Например, верблюды способны отключать на некоторое время терморегуляционное испарение. При этом животное массой 500 кг аккумулирует около 10 500 кДж, для рассеивания которых потребовалось бы затратить 5 л воды. Накопленное тепло выводится из организма ночью путем прямого излучения, когда воздух становится прохладнее тела.

Пойкилотермные животные, однако, не могут полностью избежать потерь воды на испарение. Даже у рептилий с их ороговевшим эпидермисом потери воды через кожу значительны. У мелких ящериц они могут достигать 20 % и более от массы тела за сутки. Поэтому и для пойкилотермных основной путь сохранения водного баланса при жизни в пустыне – это избегание излишних тепловых нагрузок.

Водная среда жизни

Водная среда жизни (гидросфера) занимает 71 % площади земного шара. Более 98 % воды сосредоточено в морях и океанах, 1,24% – льды полярных областей, 0,45 % – пресные воды рек, озер, болот.

В мировом океане различают две экологические области: толщу водыпелагиаль , и дно бенталь. В зависимости от глубины бенталь (рис. 63) делится на сублиторальную зону – область плавного понижения до глубины 200 м, батиальную – область крутого склона, абиссальную – океаническое ложе со средней глубиной 3–6 км. Более глубокие области бентали (6–10 км) – ультраабиссаль. Кромка берега, заливаемая во время приливов – литораль. Часть берега выше уровня приливов, увлажняемая брызгами прибоя – супралитораль.

 Рис. 63 Вертикальная поясность в Мировом океане











Рисунок 63 – Вертикальная поясность в Мировом океане


Обитатели водной среды, называются гидробионтами. В ней обитает примерно 150000 видов животных, или около 7% от их общего количества и 10000 видов растений – 8%.

Различают следующие экологические группы гидробионтов. Пелагиаль – заселена организмами подразделяющимися на нектон и планктон.

Нектон (от греч. nektos – плавающий) – это совокупность пелагических активно передвигающихся животных, не имеющих непосредственной связи с дном. В основном это крупные животные, способные преодолевать большие расстояния и сильные водные течения. Для них характерна обтекаемая форма тела и хорошо развитые органы движения (рыбы, кальмары, ластоногие, киты) (рис. 64). В пресных водах к нектону кроме рыб относятся земноводные и активно перемещающиеся насекомые.

 Рис. 64 Быстро плавающие рыбы (скумбрия, меч-рыба, акула, тунец)











Рисунок 64 – Быстро плавающие рыбы (скумбрия, меч–рыба, акула, тунец)

Планктон (от греч. planktos – блуждающий, парящий) – это совокупность пелагических организмов, не обладающих способностью к быстрым активным передвижениям (рис. 65). Подразделяются на: фитопланктон (диатомовые и зеленые водоросли) и зоопланктон (мелкие ракообразные, простейшие – фораминиферы, радиолярии; медузы, крылоногие моллюски).

 Рис. 65 Разнообразные организмы, составляющие морской планктон: водоросли, ночесветки, мелкие ракообразные, медузы, гребневики, сагитты











Рисунок 65 – Разнообразные организмы, составляющие морской планктон: водоросли, ночесветки, мелкие ракообразные, медузы, гребневики, сагитты

Нейстон (от греч. neustos – плавающий) – совокупность организмов, населяющих поверхностную пленку воды на границе с воздушной средой. Это личинки дясятиногих, усоногих, веслоногих ракообразных, брюхоногих и двустворчатых моллюсков, иглокожих, рыб. Проходя личиночную стадию, они покидают поверхностный слой, служивший им и убежищем, перемещаются жить на дно или пелагиаль.

Плейстон (от греч. plein – плавать на корабле) – это организмы, у которых верхняя часть тела растет над водой, а нижняя – в воде (ряска – Lemma, сифонофоры и др.).

Бентос (от греч. benthos – глубина) – совокупность организмов, обитающих на дне водоемов. Представлен в основном прикрепленными или медленно передвигающимися животными (зообентос: фораминефоры, рыбы, губки, кишечнополостные, черви, плеченогие моллюски, асцидии, и др.), более многочисленными на мелководье. На мелководье в бентос входят и растения (фитобентос: диатомовые, зеленые, бурые, красные водоросли, бактерии). На глубине, где нет света, фитобентос отсутствует. У побережий встречаются цветковые растения зостера, рупия. Наиболее богаты фитобентосом каменистые участки дна.

В озерах зообентос менее обилен и разнообразен, чем в море. Его образуют простейшие (инфузории, дафнии), пиявки, моллюски, личинки насекомых и др. Фитобентос озер образован свободно плавающими диатомеями, зелеными и сине–зелеными водорослями; бурые и красные водоросли отсутствуют.

Укореняющиеся прибрежные растения в озерах образуют четко выраженные пояса, видовой состав и облик которых согласуются с условиями среды в пограничной зоне « суша –вода». В воде у самого берега растут гидрофиты – полупогруженные в воду растения (стрелолист, белокрыльник, камыши, рогоз, осоки, трищетинник, тростник). Они сменяются гидатофитами – растениями, погруженными в воду, но с плавающими листьями (лотос, ряски, кубышки, чилим, такла) и – далее – полностью погруженными (рдесты, элодея, хара). К гидатофитам относятся и плавающие на поверхности растения (ряска).

Основные свойства водной среды. В жизни водных организмов большую роль играют вертикальное перемещение воды, плотность, температурный, световой, солевой, газовый (содержание кислорода и углекислого газа) режимы, концентрация водородных ионов (рН).

Температурный режим отличается в воде, во–первых, меньшим притоком тепла, во–вторых, большей стабильностью, чем на суше. Часть тепловой энергии, поступающей на поверхность воды, отражается, часть расходуется на испарение. Испарение воды с поверхности водоемов, при котором затрачивается около 2263,8 Дж/г, препятствует перегреванию нижних слоев, а образование льда, при котором выделяется теплота плавления (333,48 Дж/г), замедляет их охлаждение. Изменение температуры в текущих водах следует за ее изменениями в окружающем воздухе, отличаясь меньшей амплитудой.

В озерах и прудах умеренных широт термический режим определяется хорошо известным физическим явлением – вода обладает максимальной плотностью при 4 0С. Вода в водоемах четко делится на три слоя:

  1. эпилимнион – верхний слой, температура которого испытывает резкие сезонные колебания;
  2. металимнион – переходный, слой температурного скачка, отмечается резкий перепад температур;
  3. гиполимнион – глубоководный слой, доходящий до самого дна, где температура в течение года изменяется незначительно.

Летом наиболее теплые слои воды располагаются у поверхности, а холодные – у дна. Данный вид послойного распределения температур в водоеме называется прямая стратификация. Зимой, с понижением температуры, происходит обратная стратификация: поверхностный слой имеет температуру, близкую к 0 0С, на дне температура около 4 0С, что соответствует максимальной ее плотности. Таким образом, с глубиной температура повышается. Это явление, называемое температурной дихотомией, наблюдается в большинстве озер умеренной зоны летом и зимой. В результате температурной дихотомии нарушается вертикальная циркуляция – наступает период временного застоя – стагнация. Весной поверхностная вода вследствие нагревания до 4 0С становится более плотной и погружается вглубь, а на ее место с глубины поднимается более теплая вода. В результате такой вертикальной циркуляции в водоеме наступает гомотермия, то есть на какое-то время температура всей водной массы выравнивается (рис. 66). С дальнейшим повышением температуры верхние слои становятся все менее плотными и уже не опускаются вниз – летняя стагнация. Осенью же поверхностный слой охлаждается, становится более плотным и опускается вглубь, вытесняя на поверхность более теплую воду. Это происходит до наступления осенней гомотермии. При охлаждении поверхностных вод ниже 4 0С они становятся менее плотными и опять остаются на поверхности. В результате прекращается циркуляция воды и наступает зимняя стагнация. В периоды стагнаций в толще воды образуется дефицит кислорода – летом в придонной части, а зимой и в верхней, вследствие чего в зимний период нередко происходят заморы рыбы.

В морской среде также существует термическая стратификация, определяемая глубиной. Выделяют следующие слои:

  1. термосфера – поверхностный слой толщиной до 400 м. Воды подвержены действию ветра, суточные колебания воды наблюдаются до 50–метровой глубины, а сезонные еще глубже. В экваториальной зоне среднегодовая температура поверхностных слоев составляет 26–27 0С, в полярной – около 0 0С.
  2. постоянный термоклин – промежуточный слой до глубины 1500 м; температура в нем опускается до 1–3 0С.
  3. глубоководный слой – характеризуется одинаковой температурой около 1–3 0С, за исключением полярных районов, где температура близка к 0 0С.

 Рис. 66 Стратификация и перемещения воды в озере (по Э. Понтеру и др., 1982)











Рисунок 66 – Стратификация и перемещения воды в озере (по Э. Понтеру и др., 1982)

В целом же следует отметить, что амплитуда годовых колебаний температуры в верхних слоях океана не более 10–15 0С, в континентальных водах – 30–35 0С.

Таким образом, температурный режим водоемов характеризуется относительной стабильностью, среди гидробионтов, в большей мере, чем среди организмов суши, распространена стенотермность. Незначительные колебания температуры в ту или иную сторону сопровождается существенными изменениями в водных экосистемах.

Примеры: «биологический взрыв» в дельте Волги из-за понижения уровня Каспийского моря – разрастание зарослей лотоса (Nelumba kaspium), в южном Приморье – зарастание белокрыльником стариц рек (Комаровка, Илистая и др.) по берегам которых вырублена и сожжена древесная растительность.

Эвритермные виды встречаются в основном в мелких континентальных водоемах и на литорали морей высоких и умеренных широт, где значительны суточные и сезонные колебания.

Воде свойственна значительная плотность (в 800 раз) превосходит воздушную среду) и вязкость. Плотность воды – это фактор, определяющий условия передвижения водных организмов и давление на разных глубинах. Для дистиллированной воды плотность равна 1 г/см3 при 4 0C. Плотность природных вод, содержащих растворенные соли, может быть больше, до 1,35 г/см3. Давление возрастает с глубиной примерно в среднем на 1 • 105 Па (1 атм) на каждые 10 м.

В связи с резким градиентом давления в водоемах гидробионты в целом значительно более эврибатны по сравнению с сухопутными организмами. Некоторые виды, распространенные на разных глубинах, переносят давление от нескольких до сотен атмосфер. Например, голотурии рода Elpidia, черви Priapulus caudatus обитают от прибрежной зоны до ультраабиссали. Даже пресноводные обитатели, например инфузории-туфельки, сувойки, жуки-плавунцы и др., выдерживают в опыте до 6 • 107 Па (600 атм).

Однако многие обитатели морей и океанов относительно стенобатны и приурочены к определенным глубинам. Стенобатность чаще всего свойственна мелководным и глубоководным видам. Только на литорали обитают кольчатый червь пескожил Arenicola, моллюски морские блюдечки (Patella). Многие рыбы, например из группы удильщиков, головоногие моллюски, ракообразные, погонофоры, морские звезды и др. встречаются лишь на больших глубинах при давлении не менее 4 • 107– 5 • 107 Па (400–500 атм).

Плотность воды обеспечивает возможность опираться на нее, что особенно важно для бесскелетных форм. Плотность среды служит условием парения в воде, и многие гидробионты приспособлены именно к этому образу жизни, например планктонные организмы.

В составе планктона – одноклеточные и колониальные водоросли, простейшие, медузы, сифонофоры, гребневики, крылоногие и киленогие моллюски, разнообразные мелкие рачки, личинки донных животных, икра и мальки рыб и многие другие. Планктонные организмы обладают многими сходными адаптациями, повышающими их плавучесть и препятствующими оседанию на дно. К таким приспособлениям относятся: 1) общее увеличение относительной поверхности тела за счет уменьшения размеров, сплющенности, удлинения, развития многочисленных выростов или щетинок, что увеличивает трение о воду; 2) уменьшение плотности за счет редукции скелета, накопления в теле жиров, пузырьков газа и т. п. У диатомовых водорослей запасные вещества отлагаются не в виде тяжелого крахмала, а в виде жировых капель. Ночесветка Noctiluca отличается таким обилием газовых вакуолей и капелек жира в клетке, что цитоплазма в ней имеет вид тяжей, сливающихся только вокруг ядра. Воздухоносные камеры есть и у сифонофор, ряда медуз, планктонных брюхоногих моллюсков и др.

Водоросли (фитопланктон) парят в воде пассивно, большинство же планктонных животных способно к активному плаванию, но в ограниченных пределах. Планктонные организмы не могут преодолевать течения и переносятся ими на большие расстояния. Многие виды зоопланктона способны, однако, к вертикальным миграциям в толще воды на десятки и сотни метров как за счет активного передвижения, так и за счет регулирования плавучести своего тела.

Плотность и вязкость воды сильно влияют на возможность активного плавания. Представители нектона – рыбы, кальмары, дельфины. Быстрое движение в водной толще возможно лишь при наличии обтекаемой формы тела и сильно развитой мускулатуры. Торпедовидная форма вырабатывается у всех хороших пловцов независимо от их систематической принадлежности и способа движения в воде: реактивного, за счет изгибания тела, с помощью конечностей.

Прозрачность и световой режим особенно сказывается на распространении растений: в мутных водоемах они обитают только в поверхностном слое. Световой режим обусловливается также закономерным убыванием света с глубиной из–за того, что вода поглощает солнечный свет. При этом лучи с разной длиной волны поглощаются неодинаково: быстрее всего красные, тогда как сине-зеленые проникают на значительные глубины. Цвет среды при этом меняется, постепенно переходя от зеленоватого до зеленого, голубого, синего, сине–фиолетового, сменяемого постоянным мраком. Соответственно этому с глубиной зеленые водоросли сменяются бурыми и красными, пигменты которых приспособлены к улавливанию солнечных лучей с разной длиной волны. С глубиной также закономерно меняется окраска животных. Наиболее ярко и разнообразно окрашены обитатели литоральной и сублиторальной зон. Многие глубинные организмы, подобно пещерным, не имеют пигментов. В сумеречной зоне широко распространена красная окраска, которая является дополнительной к сине–фиолетовому свету на этих глубинах. Дополнительные по цвету лучи наиболее полно поглощаются телом. Это позволяет животным скрываться от врагов, так как их красный цвет в сине–фиолетовых лучах зрительно воспринимается как черный. Красная окраска характерна для таких животных сумеречной зоны, как морской окунь, красный коралл, различные ракообразные и др.

У некоторых видов, обитающих у поверхности водоемов, глаза разделяются на две части с разной способностью к преломлению лучей. Одна половина глаза видит в воздухе, другая – в воде. Такая « четырехглазость » характерна для жуков–вертячек, американской рыбки Anableps tetraphthalmus, одного из тропических видов морских собачек Dialommus fuscus. Эта рыбка при отливах сидит в углублениях, выставляя часть головы из воды.

Поглощение света в воде тем сильнее, чем меньше ее прозрачность, которая зависит от количества взвешенных в ней частиц. Прозрачность характеризуется предельной глубиной, где еще виден специально опускаемый диск Секки (белый диск диаметром 20 см). В Саргассовом море диск Секки виден до глубины 66,5 м, в Тихом океане – до 59 , в Индийском – до 50 м. Прозрачность рек не превышает 1–1,5 м. Отсюда и границы зон фотосинтеза сильно колеблются в разных водоемах. В самых чистых водах зона фотосинтеза достигает глубины 200 м. Сумеречная, или дисфотическая, зона занимает глубины до 1000–1500 м, а глубже, в афотическую зону, солнечный свет не проникает совсем.

Количество света в верхних слоях водоемов сильно меняется в зависимости от широты местности и от времени года. Длинные полярные ночи сильно ограничивают время, пригодное для фотосинтеза, в арктических и приантарктических бассейнах, а ледовый покров затрудняет доступ света зимой во все замерзающие водоемы.

В темных глубинах океана в качестве источника зрительной информации организмы используют свет, испускаемый живыми существами. Свечение живого организма получило название биолюминесценции. Светящиеся виды есть почти во всех классах водных животных от простейших до рыб, а также среди бактерий, низших растений и грибов. Биолюминесценция, по-видимому, многократно возникала в разных группах на разных этапах эволюции.

Химия биолюминесценции сейчас довольно хорошо изучена. Реакции, используемые для генерации света, разнообразны. Но во всех случаях это окисление сложных органических соединений (люциферинов) с помощью белковых катализаторов (люцифераз). Люциферины и люциферазы у разных организмов имеют неодинаковую структуру. В ходе реакции избыточная энергия возбужденной молекулы люциферина выделяется в виде квантов света. Живые организмы испускают свет импульсами, обычно в ответ на раздражения, поступающие из внешней среды.

Свечение может и не играть особой экологической роли в жизни вида, а быть побочным результатом жизнедеятельности клеток, как, например, у бактерий или низших растений. Экологическую значимость оно получает только у животных, обладающих достаточно развитой нервной системой и органами зрения. У многих видов органы свечения приобретают очень сложное строение с системой отражателей и линз, усиливающих излучение (рис. 67). Ряд рыб и головоногих моллюсков, неспособных генерировать свет, используют симбиотических бактерий, размножающихся в специальных органах этих животных.

 Рис. 67 Органы свечения водных животных (по С. А. Зернову, 1949):
1– глубоководный удильщик с фонариком над зубатой пастью;
2– распределение светящихся органов у рыбы сем. Mystophidae;
3– светящийся орган рыбы Argyropelecus affinis:
а – пигмент, б – рефлектор, в – светящееся тело, г – линза

















Рисунок 67 – Органы свечения водных животных (по С. А. Зернову, 1949):

  1. глубоководный удильщик с фонариком над зубатой пастью;

  2. распределение светящихся органов у рыбы сем. Mystophidae;

  3. светящийся орган рыбы Argyropelecus affinis:

а – пигмент, б – рефлектор, в – светящееся тело, г – линза

Биолюминесценция имеет в жизни животных в основном сигнальное значение. Световые сигналы могут служить для ориентации в стае, привлечения особей другого пола, подманивания жертв, для маскировки или отвлечения. Вспышка света может быть защитой от хищника, ослепляя или дезориентируя его. Например, глубоководные каракатицы, спасаясь от врага, выпускают облако светящегося секрета, тогда как виды, обитающие в освещенных водах, используют для этой цели темную жидкость. У некоторых донных червей – полихет – светящиеся органы развиваются к периоду созревания половых продуктов, причем светятся ярче самки, а глаза лучше развиты у самцов. У хищных глубоководных рыб из отряда удильщиковидных первый луч спинного плавника сдвинут к верхней челюсти и превращен в гибкое «удилище», несущее на конце червеобразную «приманку» – железу, заполненную слизью со светящимися бактериями. Регулируя приток крови к железе и, следовательно, снабжение бактерии кислородом, рыба может произвольно вызывать свечение «приманки», имитируя движения червя и подманивая добычу.

В наземной обстановке биолюминесценция развита лишь у немногих видов, сильнее всего – у жуков из семейства светляков, которые используют световую сигнализацию для привлечения особей другого пола в сумеречное или ночное время.

Соленость воды. Вода – прекрасный растворитель многих минеральных соединений. В результате природным водоемам свойствен определенный химический состав. Наибольшее значение имеют сульфаты, карбонаты, хлориды. Количество растворенных солей на 1 л воды в пресных водоемах не превышает 0,5 г, в морях и океанах – 35 г. Пресноводные растения и животные обитают в гипотонической среде, то есть среде, в которой концентрация растворенных веществ ниже, чем в жидкостях тела и тканей. Из–за разницы в осмотическом давлении вне и внутри тела в организм постоянно проникает вода, и гидробионты пресных вод вынуждены интенсивно удалять ее. В связи с этим у них хорошо выражены процессы осморегуляции. У простейших – это достигается работой выделительных вакуолей, у многоклеточных – удалением воды через выделительную систему. Некоторые инфузории каждые 2 минуты выделяют количество воды, равное объему тела. Концентрация солей в жидкостях тела и тканей морских организмов изотонична концентрации растворенных солей в окружающей воде. Поэтому осморегуляторные функции у них не развиты в такой степени как у пресноводных организмов. Трудности осморегуляции являются одной из причин того, что многие морские растения и особенно животные не сумели заселить пресные водоемы. Типично морские и типично пресноводные виды не переносят значительных изменений солености воды –стеногалинные организмы. Эвригалинные гидробионты – пресноводный судак, лещ, щука, из морских организмов - семейство кефалевых.

В пресноводных водоемах кислотность воды, или концентрация водородных ионов, варьирует гораздо сильнее, чем в морских – от pH=3,7–4,7 (кислые) до pH=7,8 (щелочные). Кислотностью воды определяется во многом видовой состав растений гидробионтов. В кислых водах болот растут сфагновые мхи и живут в обилии раковинные корненожки, но нет моллюсков–беззубок (Unio), редко встречаются другие моллюски. В щелочной среде развиваются многие виды рдестов, элодея. Большинство пресноводных рыб живут в диапазоне pH от 5 до 9 и массово гибнут за пределами этих значений. Кислотность морской воды убывает с глубиной.

Газовый режим. Основными газами в водной среде – кислород и углекислый газ.

Кислород – важнейший экологический фактор. В насыщенной кислородом воде содержание его не превышает 10 мл в 1 л, это в 21 раз ниже, чем в атмосфере. Поэтому условия дыхания гидробионтов значительно усложнены. Кислород поступает в воду в основном за счет фотосинтетической деятельности водорослей и диффузии из воздуха. Поэтому верхние слои водной толщи, как правило, богаче этим газом, чем нижние. С повышением температуры и солености воды концентрация в ней кислорода понижается. В слоях, сильно заселенных животными и бактериями, может создаваться резкий дефицит О2 из–за усиленного его потребления. Например, в Мировом океане богатые жизнью глубины от 50 до 1000 м характеризуются резким ухудшением аэрации – она в 7–10 раз ниже, чем в поверхностных водах, населенных фитопланктоном. Около дна водоемов условия могут быть близки к анаэробным.

Среди водных обитателей много видов, способных переносить широкие колебания содержания кислорода в воде, вплоть до почти полного его отсутствия (эвриоксибионты – «окси» – кислород, « бионт » – обитатель). К ним относятся, например, пресноводные олигохеты Tubifex tubifex, брюхоногие моллюски Viviparus viviparus. Среди рыб очень слабое насыщение воды кислородом могут выдерживать сазан, линь, караси. Вместе с тем ряд видов стеноксибионтны – они могут существовать лишь при достаточно высоком насыщении воды кислородом (радужная форель, кумжа, гольян, ресничный червь Planaria alpina, личинки поденок, веснянок и др.). Многие виды способны при недостатке кислорода впадать в неактивное состояние – аноксибиоз – и таким образом переживать неблагоприятный период.

Дыхание гидробионтов осуществляется либо через поверхность тела, либо через специализированные органы – жабры, легкие, трахеи. При этом покровы могут служить дополнительным органом дыхания. Например, рыба вьюн через кожу потребляет в среднем до 63 % кислорода. Если через покровы тела происходит газообмен, то они очень тонки. Дыхание облегчается также увеличением поверхности. Это достигается в ходе эволюции видов образованием различных выростов, уплощением, удлинением, общим уменьшением размеров тела. Некоторые виды при недостатке кислорода активно изменяют величину дыхательной поверхности. Черви Tubifex tubifex сильно вытягивают тело в длину; гидры и актинии – щупальцы; иглокожие – амбулакральные ножки. Многие сидячие и малоподвижные животные обновляют вокруг себя воду, либо создавая ее направленный ток, либо колебательными движениями способствуя ее перемешиванию. Двустворчатым моллюскам для этой цели служат реснички, выстилающие стенки мантийной полости; ракообразным – работа брюшных или грудных ножек. Пиявки, личинки комаров–звонцов (мотыль), многие олигохеты колышут тело, высунувшись из грунта.

У некоторых видов встречается комбинирование водного и воздушного дыхания. Таковы двоякодышащие рыбы, сифонофоры дискофанты, многие легочные моллюски, ракообразные Gammarus lacustris и др. Вторичноводные животные сохраняют обычно атмосферный тип дыхания как более выгодный энергетически и нуждаются поэтому в контактах с воздушной средой, например ластоногие, китообразные, водяные жуки, личинки комаров и др.

Нехватка кислорода в воде приводит иногда к катастрофическим явлениям – заморам, сопровождающимся гибелью множества гидробионтов. Зимние заморы часто вызываются образованием на поверхности водоемов льда и прекращением контакта с воздухом; летние – повышением температуры воды и уменьшением вследствие этого растворимости кислорода.

Частая гибель рыб и многих беспозвоночных зимой характерна, например, для нижней части бассейна реки Оби, воды которой, стекающие из заболоченных пространств Западно–Сибирской низменности, крайне бедны растворенным кислородом. Иногда заморы возникают и в морях.

Кроме недостатка кислорода, заморы могут быть вызваны повышением концентрации в воде токсичных газов – метана, сероводорода, СО2 и др., образующихся в результате разложения органических материалов на дне водоемов.

Углекислый газ растворяется в воде примерно в 35 раз лучше, чем кислород и концентрация его в воде в 700 раз больше, чем в атмосфере. Обеспечивает фотосинтез водных растений и участвует в формировании известковых скелетных образований беспозвоночных животных.

Адаптивные особенности водных растений. Способность водных растений поглощать влагу и минеральные соли непосредственно из окружающей среды отражается на их морфологической и физиологической организации. Для них характерно слабое развитие проводящей ткани и корневой системы. Если корень есть, то служит в основном для прикрепления к подводному субстрату (не выполняя функцию минерального питания и водоснабжения). В связи с этим корни лишены корневых волосков. Мощно развитые корневища у некоторых из них служат для вегетативного размножения и запасания питательных веществ (кувшинки, кубышки, рдесты).

Из–за большой плотности воды у низших растений имеются специальные придатки, увеличивающие их поверхность и позволяющие им удерживаться во взвешенном состоянии; у высших растений слабо развивается механическая ткань. В их стеблях, листьях, корнях располагаются воздухоносные межклеточные полости, это увеличивает легкость и плавучесть, а также способствует смыванию внутренних клеток водой с растворенными в ней газами и солями. Гидатофиты в целом характеризуются большой поверхностью листьев при незначительном общем объеме растения. Это обеспечивает им интенсивный газообмен при недостатке растворенного в воде кислорода и других газов.

У ряда водных растений развита гетерофилия (разнолистность). Верхняя поверхность плавающих листьев плотная и кожистая с большим количеством устьиц. Это способствует лучшему газообмену с воздухом. На нижней стороне плавающих и на подводных листьях устьиц совсем нет. Погруженные в воду листья обычно очень тонкие, хлорофилл располагается в клетках эпидермиса. Это приводит к усилению процесса фотосинтеза в условиях слабого освещения.

Защитное образование водных растений от вымывания из клеток минеральных солей – слизь, выделяемая специальными клетками и образование эндодермы в виде кольца из более толстостенных клеток. Характерно активное вегетативное размножение, развитие гидрохории – вынос цветоносов над водой и распространение пыльцы, семян и спор поверхностными течениями.

Адаптивные особенности водных животных. У животных можно выделить анатомо–морфологические, физиологические и поведенческие адаптации. Животные, обитающие в толще воды, обладают, прежде всего, приспособлениями, увеличивающими их плавучесть и позволяющими им противостоять движению воды. Донные же организмы вырабатывают приспособления, которые препятствуют поднятию их в толщу воды или уменьшают плавучесть, что позволяет им удерживаться на дне.

У живущих в толще воды и активно плавающих животных тело имеет обтекаемую форму и смазано слизью, уменьшающей трение при передвижении. Развиты приспособления для повышения плавучести: скопления жира в тканях, плавательные пузыри у рыб, воздухоносные полости у сифонофор. У простейших раковины обладают пористостью. У пассивно плавающих животных увеличивается удельная поверхность тела за счет выростов, шипов, придатков; тело уплощается, происходит редукция скелетных органов. Разные способы передвижения: изгибание тела, с помощью жгутиков, ресничек, реактивный способ передвижения (головомоллюски).

У придонных животных исчезает или слабо развит скелет, увеличиваются размеры тела, обычна редукция зрения, развитие осязательных органов.

Для животных пассивно плавающих в толще воды, характерно не только уменьшение массы, но и увеличение удельной поверхности тела: уплощается тело, на нем образуются выросты, шипы. Активное плавание у животных: с помощью ресничек, жгутиков, изгибания тела, реактивным способом за счет выбрасываемой струи воды. Кальмары развивают скорость до 40–50 км/ч.

У крупных животных имеются специализированные конечности – плавники, ласты, тело имеет обтекаемую форму и покрыто слизью, что позволяет им развивать достаточно высокую скорость передвижения, преодолевая сопротивление воды.

Жизнь в постоянных сумерках или во мраке сильно ограничивает возможности зрительной ориентации гидробионтов. В связи с быстрым затуханием световых лучей в воде даже обладатели хорошо развитых органов зрения ориентируются при их помощи лишь на близком расстоянии.

Звук распространяется в воде быстрее, чем в воздухе. Ориентация на звук развита у гидробионтов в целом лучше, чем зрительная. Ряд видов улавливает даже колебания очень низкой частоты (инфразвуки), возникающие при изменении ритма волн, и заблаговременно спускается перед штормом из поверхностных слоев в более глубокие (например, медузы). Многие обитатели водоемов – млекопитающие, рыбы, моллюски, ракообразные – сами издают звуки. Ракообразные осуществляют это трением друг о друга различных частей тела; рыбы – с помощью плавательного пузыря, глоточных зубов, челюстей, лучей грудных плавников и другими способами. Звуковая сигнализация служит чаще всего для внутривидовых взаимоотношений, например для ориентации в стае, привлечения особей другого пола и т. п., и особенно развита у обитателей мутных вод и больших глубин, живущих в темноте.

Ряд гидробионтов отыскивает пищу и ориентируется при помощи эхолокации – восприятия отраженных звуковых волн (китообразные). Многие воспринимают отраженные электрические импульсы, производя при плавании разряды разной частоты. Известно около 300 видов рыб, способных генерировать электричество и использовать его для ориентации и сигнализации. Пресноводная рыбка водяной слон (Mormyrus kannume) посылает до 30 импульсов в секунду, обнаруживая беспозвоночных, которых она добывает в жидком иле без помощи зрения. Частота разрядов у некоторых морских рыб доходит до 2000 импульсов в секунду. Ряд рыб использует электрические поля также для защиты и нападения (электрический скат, электрический угорь и др.).

Для ориентации в глубине служит восприятие гидростатического давления. Оно осуществляется при помощи статоцистов, газовых камер и других органов.

Наиболее древний способ ориентации, свойственный всем водным животным, – восприятие химизма среды. Хеморецепторы многих гидробионтов обладают чрезвычайной чувствительностью. В тысячекилометровых миграциях, которые характерны для многих видов рыб, они ориентируются в основном по запахам, с поразительной точностью находя места нерестилищ или нагула. Экспериментально доказано, например, что лососи, искусственно лишенные обоняния, не находят устья своей реки, возвращаясь на нерест, но никогда не ошибаются, если могут воспринимать запахи. Тонкость обоняния чрезвычайно велика у рыб, совершающих особенно далекие миграции.

Специфика приспособлений к жизни в пересыхающих водоемах. На Земле существует много временных, неглубоких водоемов, возникающих после разлива рек, сильных дождей, таяния снега и т. п. В этих водоемах, несмотря на краткость их существования, поселяются разнообразные гидробионты.

Общими особенностями обитателей пересыхающих бассейнов являются способности давать за короткие сроки многочисленное потомство и переносить длительные периоды без воды. Представители многих видов при этом закапываются в ил, переходя в состояние пониженной жизнедеятельности – гипобиоза. Так ведут себя щитни, ветвистоусые рачки, планарии, малощетинковые черви, моллюски и даже рыбы – вьюн, африканский протоптерус и южноамериканский лепидосирен из двоякодышащих. Многие мелкие виды образуют цисты, выдерживающие засуху, – таковы солнечники, инфузории, корненожки, ряд веслоногих рачков, турбеллярий, нематоды рода Rhabditis. Другие переживают неблагоприятный период в стадии высокоустойчивых яиц. Наконец, некоторым мелким обитателям пересыхающих водоемов присуща уникальная способность высыхать до состояния пленки, а при увлажнении возобновлять рост и развитие. Способность переносить полное обезвоживание организма выявлена у коловраток родов Callidina, Philodina и др., тихоходок Macrobiotus, Echiniscus, нематод родов Tylenchus, Plectus, Cephalobus и др. Эти животные населяют микроводоемы в подушках мхов и лишайников и адаптированы к резким изменениям режима влажности.

Фильтрация как тип питания. Многие гидробионты обладают особым характером питания – это отцеживание или осаждение взвешенных в воде частиц органического происхождения и многочисленных мелких организмов (рис. 68).

 Рис. 68 Состав планктонной пищи асцидии из Баренцева моря (по С. А. Зернову, 1949)











Рисунок 68 – Состав планктонной пищи асцидии из Баренцева моря (по С. А. Зернову, 1949)

Такой способ питания, не требующий больших затрат энергии на поиски добычи, характерен для пластинчатожаберных моллюсков, сидячих иглокожих, полихет, мшанок, асцидий, планктонных рачков и др. (рис. 69). Животные–фильтраторы выполняют важнейшую роль в биологической очистке водоемов. Мидии, обитающие на площади 1 м2, могут прогонять через мантийную полость 150–280 м3 воды за сутки, осаждая взвешенные частицы. Пресноводные дафнии, циклопы или самый массовый в океане рачок Calanus finmarchicus отфильтровывают в день до 1,5 л воды на особь. Литоральная зона океана, особенно богатая скоплениями фильтрующих организмов, работает как эффективная очистительная система.


 Рис. 69 Фильтровальные аппараты гидробионтов (по С. А. Зернову, 1949):
1– личинки мошек Simulium на камне (а) и их фильтровальные придатки (б);
2– фильтрующая ножка рачка Diaphanosoma brachyurum;
3– жаберные щели асцидии Phasullia;
4– рачок Bosmina с отфильтрованным содержимым кишечника;
5– пищевой ток инфузории Bursaria
















Рисунок 69 – Фильтровальные аппараты гидробионтов (по С. А. Зернову, 1949):

  1. личинки мошек Simulium на камне (а) и их фильтровальные придатки (б);
  2. фильтрующая ножка рачка Diaphanosoma brachyurum;
  3. жаберные щели асцидии Phasullia;
  4. рачок Bosmina с отфильтрованным содержимым кишечника;
  5. пищевой ток инфузории Bursaria

Свойства среды во многом определяют пути адаптации ее обитателей, их образ жизни и способы использования ресурсов, создавая цепи причинно–следственных зависимостей. Так, высокая плотность воды делает возможным существование планктона, а наличие парящих в воде организмов – предпосылка для развития фильтрационного типа питания, при котором возможен и сидячий образ жизни животных. В результате формируется мощный механизм самоочищения водоемов биосферного значения. В нем участвует огромное количество гидробионтов, как бентосных, так и пелагиальных, от одноклеточных простейших до позвоночных животных. По расчетам, вся вода в озерах умеренного пояса пропускается через фильтрационные аппараты животных от нескольких до десятков раз в течение вегетационного сезона, а весь объем Мирового океана профильтровывается в течение нескольких суток. Нарушение деятельности фильтраторов различными антропогенными воздействиями создает серьезную угрозу в поддержании чистоты вод.

Смена условий в водной среде вызывает и определенные поведенческие реакции организмов. С изменением освещенности, температуры, солености, газового режима и других факторов связаны вертикальные (опускание вглубь, поднятие к поверхности) и горизонтальные (нерестовые, зимовальные и нагульные) миграции животных. В морях и океанах в вертикальных миграциях принимают участие миллионы тонн гидробионтов, а при горизонтальных миграциях водные животные могут преодолевать сотни и тысячи километров.

Наземно-воздушная среда

В ходе эволюции эта среда была освоена позже, чем водная. Особенностью наземно-воздушной среды жизни является то, что организмы, обитающие здесь, окружены газообразной средой, характеризующейся низкими влажностью, плотностью и давлением, высоким содержанием кислорода. Как правило, животные в этой среде передвигаются по почве (твердый субстрат), а растения укореняются в ней.

В наземно–воздушной среде действующие экологические факторы имеют ряд характерных особенностей: более высокая интенсивность света в сравнении с другими средами (табл. 6), значительные колебания температуры, изменение влажности в зависимости от географического положения, сезона и времени суток. Воздействие факторов, перечисленных выше, неразрывно связано с движением воздушных масс – ветра.


Таблица 6 – Условия обитания организмов воздушной и водной среды (по Д. Ф. Мордухай-Болтовскому, 1974)

 Табл. 6 Условия обитания организмов воздушной и водной среды (по Д. Ф. Мордухай-Болтовскому, 1974)











В процессе эволюции у живых организмов наземно-воздушной среды выработались характерные анатомо-морфологические, физиологические адаптации.

Особенности воздействия основных экологических факторов на растения и животных в наземно–воздушной среде. Воздух как экологический фактор характеризуется постоянством состава – кислорода в нем обычно около 21%, углекислого газа 0,03 %.

Низкая плотность воздуха определяет его малую подъемную силу и незначительную опорность. Все обитатели воздушной среды тесно связаны с поверхностью земли, служащей им для прикрепления и опоры. Плотность воздушной среды не оказывает высокого сопротивления организмам при их передвижении по поверхности земли, однако затрудняет перемещение по вертикали. Для большинства организмов пребывание в воздухе связано только с расселением или поиском добычи.

Малая подъемная сила воздуха определяет предельную массу и размеры наземных организмов. Самые крупные животные, обитающие на поверхности земли, меньше, чем гиганты водной среды. Крупные млекопитающие (размером и массой современного кита) не могли бы жить на суше, так как были бы раздавлены собственной тяжестью.

Малая плотность воздуха создает незначительную сопротивляемость передвижению. Экологические выгоды этого свойства воздушной среды использовали многие наземные животные в ходе эволюции, приобретя способность к полету. К активному полету способны 75 % видов всех наземных животных, преимущественно насекомые и птицы, но встречаются летуны и среди млекопитающих и рептилий.

Благодаря подвижности воздуха, существующим в нижних слоях атмосферы вертикальным и горизонтальным передвижениям воздушных масс возможен пассивный полет ряда организмов. У многих видов развита анемохория – расселение с помощью воздушных потоков (рис. 70). Анемохория характерна для спор, семян и плодов растений, цист простейших, мелких насекомых, пауков и т.д. Пассивно переносимые потоками воздуха организмы получили в совокупности название аэропланктона по аналогии с планктонными обитателями водной среды.

Основная же экологическая роль горизонтальных воздушных передвижений (ветров) – косвенная в усилении и ослаблении воздействия на наземные организмы таких важных экологических факторов, как температура и влажность. Ветры усиливают отдачу животными и растениями влаги и тепла.

 Рис. 70 Семена и плоды растений, распространяемые ветром











Рисунок 70 – Семена и плоды растений, распространяемые ветром

Газовый состав воздуха в приземном слое воздухе довольно однороден (кислород – 20,9 %, азот – 78,1 %, инертные газы – 1 %, углекислый газ – 0,03 % по объему) благодаря его высокой диффузионной способности и постоянному перемешиванию конвекционным и ветровым потоками. Однако различные примеси газообразных, капельно-жидких и твердых (пылевых) частиц, попадающих в атмосферу из локальных источников, могут иметь существенное экологическое значение.

Высокое содержание кислорода способствовало повышению обмена веществ у наземных организмов, и на базе высокой эффективности окислительных процессов возникла гомойотермия животных. Кислород из–за постоянно высокого его содержания в воздухе не является фактором, лимитирующим жизнь в наземной среде. Лишь местами, в специфических условиях, создается временный его дефицит, например в скоплениях разлагающихся растительных остатков, запасах зерна, муки и т.д.

Содержание углекислого газа может изменяться в отдельных участках приземного слоя воздуха в довольно значительных пределах. Например, при отсутствии ветра в центре больших городов концентрация его возрастает в десятки раз.

Эдафические факторы. Свойства грунта и рельеф местности также влияют на условия жизни наземных организмов, в первую очередь растений. Свойства земной поверхности, оказывающие экологическое воздействие на ее обитателей, объединяют названием эдафические факторы среды.

Характер корневой системы растений зависит от гидротермического режима, аэрации, сложения, состава и структуры почвы (рис. 71). Например, корневые системы древесных пород (березы, лиственницы) в районах с многолетней мерзлотой располагаются на небольшой глубине и распростерты вширь. Там, где нет многолетней мерзлоты, корневые системы этих же растений менее распростерты и проникают вглубь. У многих степных растений корни могут доставать воду с большой глубины, в то же время у них много и поверхностных корней в гумусированном горизонте почвы, откуда растения поглощают элементы минерального питания.

Рельеф местности и характер грунта влияют на специфику передвижения животных. Например, копытные, страусы, дрофы, живущие на открытых пространствах, нуждаются в твердом грунте для усиления отталкивания при быстром беге. У ящериц, обитающих на сыпучих песках, пальцы окаймлены бахромкой из роговых чешуй, которая увеличивает поверхность опоры. Для наземных обитателей, роющих норы, плотные грунты неблагоприятны. Характер почвы в ряде случаев влияет на распределение наземных животных, роющих норы, зарывающих в грунт для спасения от жары или хищников либо откладывающих в почву яйца и т.д.

 Рис. 71 Корневая система верблюжьей колючки и пшеницы











Рисунок 71 – Корневая система верблюжьей колючки и пшеницы

Погодные и климатические особенности. Условия жизни в наземно–воздушной среде осложняются, кроме того, погодными изменениями. Погода – это непрерывно меняющееся состояние атмосферы у земной поверхности, до высоты примерно 20 км (граница тропосферы). Изменчивость погоды проявляется в постоянном варьировании сочетании таких факторов среды, как температура и влажность воздуха, облачность, осадки, сила и направление ветра и т.п. Для погодных изменений наряду с закономерным чередованием их в годовом цикле характерны непериодические колебания, что существенно усложняет условия существования наземных организмов.

Климат местности. Многолетний режим погоды характеризует климат местности. В понятие климата входят не только средние значения метеорологических явлений, но также их годовой и суточный ход, отклонения от него и их повторяемость. Климат определяется географическими условиями района.

Зональное разнообразие климатов осложняется действием муссонных ветров, распределением циклонов и антициклонов, влиянием горных массивов на движение воздушных масс, степенью удаления от океана и многими другими местными факторами.

Для большинства наземных организмов, особенно мелких, важен не столько климат района, сколько условия их непосредственного местообитания. Очень часто местные элементы среды (рельеф, растительность и т.п.) так изменяют в конкретном участке режим температуры, влажности, света, движения воздуха, что он значительно отличается от климатических условий местности. Такие локальные модификации климата, складывающиеся в приземном слое воздуха, называют микроклиматом. В каждой зоне микроклиматы очень разнообразны. Можно выделить микроклиматы сколь угодно малых участков. Например, особый режим создается в венчиках цветков, что используют обитающие там обитатели. Особый устойчивый микроклимат возникает в норах, гнездах, дуплах, пещерах и др. закрытых местах.

Осадки. Помимо водообеспечения и создания запасов влаги, они могут играть и другую экологическую роль. Так, сильные ливневые дожди или град оказывают иногда механическое воздействие на растения или животных.

Особенно многообразна экологическая роль снегового покрова. Суточные колебания температур проникают в толщу снега лишь до 25 см, глубже температура почти не изменяется. При морозах в – 20–30 0С под слоем снега в 30–40 см температура лишь ненамного ниже нуля. Глубокий снежный покров защищает почки возобновления, предохраняет от вымерзания зеленые части растений; многие виды уходят под снег, не сбрасывая листвы, например ожика волосистая, вероника лекарственная и др.

Мелкие наземные зверки ведут и зимой активный образ жизни, прокладывая под снегом и в его толще целые галереи ходов. Для ряда видов, питающихся подснежной растительностью, характерно даже зимнее размножение, которое отмечено, например, у леммингов, лесной и желтогорлой мыши, ряда полевок, водяной крысы и др. Тетеревиные птицы – рябчики, тетерева, тундровые куропатки – зарываются в снег на ночевку.

Крупным животным зимний снеговой покров мешает добывать корм. Многие копытные (северные олени, кабаны, овцебыки) питаются зимой исключительно подснежной растительностью, и глубокий снежный покров, а особенно твердая корка на его поверхности, возникающая в гололед, обрекают их на бескормицу. Глубина снежного покрова может ограничивать географическое распространение видов. Например, настоящие олени не проникают на север в те районы, где толща снега зимой более 40–50 см.

Почва как среда обитания

Земля – единственная из планет имеет почву (эдасфера, педосфера) – особенную, верхнюю оболочку суши. Эта оболочка сформировалась в исторически обозримое время – она ровесница сухопутной жизни на планете. Впервые на вопрос о происхождении почвы ответил М.В. Ломоносов («О слоях земли»): «…почва произошла от согнития животных и растительных тел … долготою времени…». А великий русский ученый В. В. Докучаев впервые назвал почву самостоятельным природным телом и доказал, что почва есть «…такое же самостоятельное естественноисторическое тело, как любое растение, любое животное, любой минерал … оно есть результат, функция совокупной, взаимной деятельности климата данной местности, ее растительных и животных организмов, рельефа и возраста страны…, наконец, подпочвы, т.е. грунтовых материнских горных пород. … Все эти агенты–почвообразователи, в сущности, совершенно равнозначные величины и принимают равноправное участие в образовании нормальной почвы…».

И уже современный известный ученый почвовед Н.А. Качинский («Почва, ее свойства и жизнь», 1975) дает следующее определение почвы: «Под почвой надо понимать все поверхностные слои горных пород, переработанные и измененные совместным воздействием климата (свет, тепло, воздух, вода), растительных и животных организмов».

Почва представляет собой рыхлый тонкий поверхностный слой суши, контактирующий с воздушной средой. Почва пронизана полостями, заполненными смесью газов и водными растворами, и поэтому в ней складывается чрезвычайно разнообразные условия, благоприятные для жизни множества микро– и макроорганизмов. Объем мелких полостей в почве – очень важная ее характеристика. В рыхлых почвах он может составлять до 70%, а в плотной – около 20% (рис. 72). Размеры полостей между частицами почвы, пригодны для обитания в них животных, обычно быстро уменьшаются с глубиной.

 Рис. 72 Структура почвы











Рисунок 72 – Структура почвы

В этих порах и полостях или на поверхности твердых частиц обитает огромное множество микроскопических существ: бактерий, грибов, простейших, круглых червей, членистоногих (рис. 73; 74; 75). Более крупные животные прокладывают в почве ходы сами. Вся почва пронизана корнями растений. Глубина почвы определяется глубиной проникновения корней и деятельностью роющих животных. Она составляет не более 1,5–2 м.

 Рис. 73 Почвенный гриб мукор












Рисунок 73 – Почвенный гриб мукор

 Рис. 74 Почвенный гриб пеницилл












Рисунок 74 – Почвенный гриб пеницилл

 Рис. 75 Мелкие почвенные членистоногие: колемболы и клещи












Рисунок 75 – Мелкие почвенные членистоногие: колемболы и клещи

В почве сглажены температурные колебания по сравнению с приземным слоем воздуха, а наличие грунтовых вод и проникновение осадков создают запасы влаги и обеспечивают режим влажности, промежуточный между водой и наземной средой. В почве концентрируются запасы органических и минеральных веществ, поставляемых отмирающей растительностью и трупами животных. Все это определяет большую насыщенность почвы жизнью.

Неоднородность условий в почве резче всего проявляется в вертикальном направлении. С глубиной резко меняется ряд важнейших экологических факторов, влияющих на жизнь обитателей почвы. Прежде всего, это относится к структуре почвы. Независимо от типа почвы в ее профиле выделяют три основных горизонта, различающиеся по морфологическим и химическим свойствам между собой и между аналогичными горизонтами в других почвах:

1. Перегнойно-аккумулятивный горизонт А. В нем накапливается и преобразуется органическое вещество. После преобразования часть элементов из этого горизонта выносится с водой в нижележащие.

Этот горизонт наиболее сложный и важный из всего почвенного профиля по своей биологической роли. Он состоит из лесной подстилки – А0, образованной наземным опадом (отмершая органика слабой степени разложенности на поверхности почвы). По составу и мощности подстилки можно судить об экологических функциях растительного сообщества, его происхождении, стадии развития. Ниже подстилки располагается темноокрашенный гумусовый горизонт – А1, образованный измельченными, разной степени разложения остатками растительной массы и массы животных. В деструкции остатков участвуют позвоночные животные (фитофаги, сапрофаги, копрофаги, хищники, некрофаги). По мере измельчения органические частицы поступают в следующий нижний горизонт – элювиальный (А2). В нем происходит химическое разложение гумуса на простые элементы.

2. Иллювиальный, или горизонт вмывания В.В нем оседают и преобразуются в почвенные растворы соединения, вынесенные из горизонта А. Это гуминовые кислоты и их соли, вступающие в реакцию с корой выветривания и усваиваемые корнями растений.

3. Материнская (подстилающая) порода (кора выветривания), или горизонт С.Из этого горизонта – тоже после преобразования – минеральные вещества переходят в почву.

Вода (25–30 %) в почве представлена 4 типами: гравитационной, гигроскопической (связанной), капиллярной и парообразной.

Гравитационная – подвижная вода, занимают широкие промежутки между частицами почвы, просачивается вниз под собственной тяжестью до уровня грунтовых вод. Легко усваивается растениями.

Гигроскопическая, или связанная – адсорбируется вокруг коллоидных частиц (глина, кварц) почвы и удерживается в виде тонкой пленки за счет водородных связей. Освобождается от них при высокой температуре (102–105 0С). Растениям она недоступна, не испаряется. В глинистых почвах такой воды до 15%, в песчаных – 5%.

Капиллярная – удерживается вокруг почвенных частиц силой поверхностного натяжения. По узким порам и каналам – капиллярам, поднимается от уровня грунтовых вод или расходится от полостей с гравитационной водой. Лучше удерживается глинистыми почвами, легко испаряется. Растения легко поглощают ее.

Парообразная – занимает все свободные от воды поры. Испаряется в первую очередь.

Осуществляется постоянный обмен поверхностных почвенных и грунтовых вод, как звено общего круговорот воды в природе, меняющий скорость и направление в зависимости от сезона года и погодных условий.

Состав почвенного воздуха изменчив. С глубиной в нем сильно падает содержание кислорода и возрастает концентрация углекислого газа. В связи с присутствием в почве разлагающихся органических веществ в почвенном воздухе может быть высокая концентрация таких токсичных газов, как аммиак, сероводород, метан и др. При затоплении почвы или интенсивном гниении растительных остатков местами могут возникать полностью анаэробные условия.

Колебания температуры резки только на поверхности почвы. Здесь они могут быть даже сильнее, чем в приземном слое воздуха. Однако с каждым сантиметром вглубь суточные и сезонные температурные изменения становятся все меньше и на глубине 1–1,5 м практически уже не прослеживаются.

Все эти особенности приводят к тому, что, несмотря на большую неоднородность экологических условий в почве, она выступает как достаточно стабильная среда, особенно для почвенных организмов. Крутой градиент влажности в почвенном профиле позволяет почвенным организмам путем незначительных перемещений обеспечить себе подходящую экологическую обстановку.

Почвенных обитателей в зависимости от их размеров и степени подвижности можно разделить на следующие группы:

  • Микробиота – это почвенные микроорганизмы, составляющие основное звено детритной пищевой цепи, представляют собой как бы промежуточное звено между растительными остатками и почвенными животными. Это зеленые и сине–зеленые водоросли, бактерии, грибы и простейшие. Это водные организмы, а почва для них – это система микроводоемов. Они живут в почвенных порах, заполненных гравитационной или капиллярной влагой, а часть жизни могут, как микроорганизмы, находиться в адсорбированном состоянии на поверхности частиц в тонких прослойках пленочной влаги.
  • Мезобиота – это совокупность сравнительно мелких, легко извлекающихся из почвы, подвижных животных (почвенные нематоды, мелкие личинки насекомых, клещи и др.). Размеры представителей мезобиоты почв – от десятых долей до 2–3 мм. Для данной группы животных почва представляется как система мелких пещер. У них нет специальных приспособлений к рытью. Они ползают по стенкам почвенных полостей при помощи конечностей или червеобразно извиваясь. Насыщенный водяными парами почвенный воздух позволяет им дышать через покровы тела. Периоды затопления почвы водой животные переживают, как правило, в пузырьках воздуха. Воздух задерживается вокруг их тела из–за несмачиваемости покровов, снабженных у большинства из них волосками, чешуйками.
  • Животные мезо– и микробиотипов способны переносить зимнее промерзание почвы, что особенно является важным, так как большинство из них не может уходить вниз из слоев, подвергающихся воздействию отрицательных температур.
  • Макробиота – это крупных почвенные животные, с размерами тела от 2 до 20 мм (личинки насекомых, многоножки, дождевые черви и др.). Он передвигаются в почве, расширяя естественные скважины путем раздвижения почвенных частиц либо роя новые ходы. Оба способа передвижения накладывают отпечаток на внешнее строение животных. Газообмен большинства видов данной группы осуществляется при помощи специализированных органов дыхания, но наряду с этим дополняется газообменом через покровы. Роющие животные могут уходить из слоев, где возникает неблагоприятная обстановка. К зиме и в засуху они концентрируются в более глубоких слоях, большей частью в нескольких десятках сантиметров от поверхности.
  • Мегабиота – это крупные землерои, главным образом из числа млекопитающих. Многие из них проводят в почве всю жизнь (златокроты в Африке, слепушки, кроты в Евразии, сумчатые кроты в Австралии). Они прокладывают в почве целые системы ходов и нор. Приспособленность к роющему подземному образу жизни находит отражение во внешнем облике и анатомических особенностях этих животных: у них недоразвиты глаза, компактное вальковатое тело с короткой шеей, короткий густой мех, сильные компактные конечности с крепкими когтями (рис. 76).

 Рис. 76 Медведка и крот






Рисунок 76 – Медведка и крот

Наиболее многочисленным и сложным составом живых организмов обладают верхние – органогенные слои–горизонты (рис. 77). В иллювиальном обитают только бактерии (серобактерии, азотфиксирующие), не нуждающиеся в кислороде.

 Рис. 77 Общий состав верхнего слоя почвы и его эдафона (по В. Тишлеру, 1955)











Рисунок 77 – Общий состав верхнего слоя почвы и его эдафона (по В. Тишлеру, 1955)

Помимо постоянных обитателей почвы среди крупных животных нередко выделяют отдельную экологическую группу обитателей нор (барсуки, сурки, суслики, тушканчики и др.). Они кормятся на поверхности, однако размножаются, зимуют, отдыхают, спасаются от опасности в почве (рис. 78).



 Рис. 78 Большой тушканчик, или земляной заяц (Allactaga major)





















Рисунок 78 – Большой тушканчик, или земляной заяц (Allactaga major)

По степени связи со средой обитания почвенные животные подразделяются на три основные экологические группы:

  • Геобионты – постоянные обитатели почвы. Весь цикл их развития протекает в почвенной среде (например, дождевые черви).
  • Геофилы – животные, часть цикла развития которых, чаще одна из фаз, обязательно происходит в почве (например, саранча).
  • Геоксены –животные, иногда посещающие почву для временного укрытия или убежища (например, жуки, грызуны и млекопитающие, живущие в норах).

Особую группу представляют организмы, заселяющие сыпучие подвижные пески. Растения, адаптированные к таким местам обитания, называются псаммофитами, а животные – псаммофилами.

У растений, произрастающих на подвижных песках, исторически выработались рядом приспособлений. Так, древесные и кустарниковые псаммофиты (белый саксаул, песчаная акация) при засыпании их песком образуют придаточные корни. Придаточные почки и побеги развиваются на корнях, если растения обнажаются при выдувании песка. Некоторые псаммофиты спасаются от заноса песком быстрым ростом побегов, редукцией листьев. Это приспособление к тому, чтобы песок легко продувался и не задерживался. Большинство псаммофитов безлистные или имеют четко выраженную ксероморфную листву (листья жесткие с сизым восковым налетом, узкие и свернутые или блестящие и кожистые) и для сокращения транспирирующей поверхности. У псаммофитов развились специальные приспособления, увеличивающие летучесть и пружинистость плодов. Их плоды передвигаются вместе с движущимся песком и не засыпаются им.

К специфичным условиям жизни в сыпучих подвижных песках приспособлены и многие животные. У позвоночных псаммофилам конечности часто устроены в форме своеобразных «песчаных лыж», облегчающих передвижение по рыхлому грунту. У ящериц, живущих на песке, на пальцах развиваются роговые гребни. У тонкопалого суслика и гребнепалого тушканчика пальцы покрыты длинными волосами и роговыми выростами. Птицы и млекопитающие песчаных пустынь способны преодолевать большие расстояния в поисках воды или длительное время обходиться без нее. Верблюды благополучно переносят отсутствие воды до 8–16 суток, обеспечивая организм необходимой влагой за счет окисления жиров. Некоторые животные во время засухи прячутся в норы, зарываются в песок или впадают в летнюю спячку.

В зонах недостаточного атмосферного увлажнения, в основном в степях и пустынях, широко распространены засоленные почвы. Это связано с тем, что в засушливом и жарком климате наблюдается неполное промывание почв осадками. В таких почвах преобладает восходящий ток воды, который приносит в верхние горизонты большое количество легкорастворимых солей, вредных для большинства растений и животных. Засоление почв может происходить и на низких побережьях морей и океанов, в местах выхода соленых источников и ключей.

Растения, обитающие на засоленных почвах, называются галофитами. Все они имеют очень высокое осмотическое давление, позволяющее им использовать почвенные растворы, поскольку сосущая сила корней превосходят сосущую силу почвенного раствора. Некоторые галофиты выделяют излишки солей через листья или накапливают их в своем организме. Типичными галофитами являются солерос, содовая и калийная солянки. Галофилы – это животные, адаптированные к жизни на засоленных почвах. В основном это беспозвоночные.

Живые организмы как среда жизни

Многие виды гетеротрофных организмов в течение всей жизни или части жизненного цикла обитают в других живых существах, тела которых служат для них средой, существенно отличающейся по свойствам от внешней. Использование одними живыми организмами других в качестве среды обитания – очень древнее и широко распространенное в природе явление. Способность использовать другие организмы как среду обитания хотя и характерна для представителей большинства крупных таксономических групп, но в целом уменьшается с усложнением их организации. Таким образом, паразитов больше всего среди микроорганизмов и относительно примитивных многоклеточных, а подверженность паразитизму наиболее развита у позвоночных животных и цветковых растений.

Внутриклеточные паразиты обнаружены у простейших (бактерии, сине–зеленые водоросли) и одноклеточных эукариотов (диатомовые, красные и зеленые водоросли, амебы, радиолярии). А среди многоклеточных организмов нет ни одного, который не имел бы в своем теле (реже – на теле) паразитов. Чем сложнее строение организма и его органов, тем более разнообразнее условия, в которых могут проживать его сожители (и тем они многочисленнее).

Английский ученый А.Е. Шитли писал, что каждая птица – представляет собой настоящий летающий зоопарк. Перья служат пищей клещам–пухоедам, кожа – блохам, вшам, москитам. Во внутренних органах множество разных червей, в крови – бактерий. В свою очередь перечисленные паразиты тоже служат средой жизни для других, более мелких паразитов – это гиперпаразитизм. Например, для паразита капустной белянки наездника известно более 20 видов вторичных паразитов из перепончатокрылых.

Автор сказки о Гулливере, Джонатан Свифт удачно отразил данное явление в высказывании:

Под микроскопом он открыл, что на блохе,

Живет блоху кусающая блошка;

На блошке той – блошинка-крошка,

В блошинку же вонзает зуб сердито

Блошиночка… и так ad infinitum, то есть без конца

Более половины всех видов на Земле относятся к паразитам.

Пути возникновения паразитизма:

Первый путь –простое квартирантство, когда более мелкий организм поселяется в жилище более крупного или вблизи него и со временем переходит на тело хозяина, а затем и внутрь, переключаясь на питание за счет его пищи или соков и тем самым, причиняя ему вред.

Второй путь – через хищничество. Если хищник нападает на крупную добычу, которую не может уничтожить и съесть сразу. Он прикрепляется к ней и постоянно питается тканями или соками ее тела. При определенных условиях такой хищник проникает внутрь тела хозяина, и найдя там благоприятную среду – обилие пищи, превращается в паразита.

Третий путь – случайное проникновение будущего паразита в организм хозяина. Крупные животные могут заглатывать с пищей мелкие формы, некоторые из них не погибают, а, приспосабливаясь, к новым условиям, превращаются в паразитов.

Паразитов обычно делят на две группы:

Эктопаразиты – это наружные паразиты, обитающие на поверхности тела хозяина (клещи, пиявки, блохи). У растений–эктопаразитов большая часть тела находится вне хозяина, а в него внедряются и вступают в контакт с живыми клетками лишь органы чужеядного питания – присоски или гаустории (повилика европейская) (рис. 79). Типичные эктопаразиты – характеризуются наличием мощных органов прикрепления – присосок, коготков и т.п., чтобы удержаться на теле хозяина.

 Рис. 79 Растение эктопаразит - повилика











Рисунок 79 – Растение эктопаразит – повилика

Эндопаразиты – это внутренние паразиты, живущие внутри тела-хозяина (рис. 80). Это большинство бактерий, вирусы, паразитические простейшие. У растений–эндопаразитов почти все тело помещается внутри тканей хозяина, наружу выходят лишь органы размножения (виды рода Rafflesia).





 Рис. 80 Инфузории из пищеварительного тракта копытных













Рисунок 80 – Инфузории из пищеварительного тракта копытных

Различают стационарный и временный паразитизм. При стационарном паразитизме паразит на длительное время, часто на всю жизнь, связывает себя с хозяином. Стационарные паразиты могут быть приурочены к одному хозяину (постоянные): вши, пухоеды, чесоточные зудни, или их развитие протекает со сменой хозяев (периодические): многие ленточные черви, сосальщики.

При временном паразитизме, паразиты часть жизни проводят свободно. К ним относят кровососущих двукрылых и многих клопов.

Паразиты обитают в специфических условиях внутренней среды хозяина. Это, с одной стороны, дает им целый ряд экологических преимуществ, а с другой – затрудняет осуществление их жизненного цикла по сравнению со свободноживущими видами.

Одно из главных преимуществ паразитов – обильное снабжение пищей за счет содержимого клеток, соков и тканей тела хозяина или содержимого его кишечника. Обильная легкодоступная пища служит условием быстрого роста паразитов. Там, где позволяет пространство, например, в кишечном тракте позвоночных, паразиты могут достигать очень больших размеров по сравнению с их свободноживущими родственниками. Так, человеческая и свиная аскариды – одни из наиболее крупных представителей класса нематод, а лентец широкий, бычий и свиной солитеры – гиганты среди плоских червей, достигающие в длину 8–12 м. Практически неорганические пищевые ресурсы служит для паразитов также условием высокого потенциала их размножения, которое обеспечивает им вероятность заражения других хозяев.

Вторым важным экологическим преимуществом для обитателей живых организмов является их защищенность от непосредственного воздействия факторов внешней среды. Внутри хозяина его сожители практически не встречаются с угрозой высыхания, резкими колебаниями температур, значительными изменениями солевого и осмотического режимов и т.п. Защищенность от внешних врагов, обилие легкоусвояемой пищи, относительная стабильность условий делают ненужной сложную дифференцировку тела, и поэтому многие внутренние паразиты и симбионты характеризуются в эволюции вторичным упрощением строения, вплоть до потери целых систем органов. Например, ленточные черви, всасывающие переваренную хозяином пищу через покровы, отличаются отсутствием пищеварительной системы и редукцией нервной.

Выход во внешнюю среду чаще всего чреват для паразитов многими опасностями, поэтому на той стадии жизненного цикла, которую паразиты проводят вне хозяина, у них развиваются защитные приспособления, позволяющие пережить этот критический период (толстые и многослойные оболочки яиц гельминтов, цисты кишечных амеб). Если в жизненном цикле паразитов нет стадии выхода во внешнюю среду, то таких защитных приспособлений не обнаруживается (рис. 81).

 Рис. 81 Жизненный цикл широкого лентеца: 1 – взрослый червь в рыбоядных млекопитающих, 2, 3 – яйца, 4 – свободная личинка, 5,6,7 – формы, паразитирующие в промежуточных хозяевах (рачках, рыбах)











Рисунок 81 – Жизненный цикл широкого лентеца: 1 – взрослый червь в рыбоядных млекопитающих, 2, 3 – яйца, 4 – свободная личинка, 5,6,7 – формы, паразитирующие в промежуточных хозяевах (рачках, рыбах)

Основные экологические трудности, с которыми сталкиваются внутренние сожители живых организмов, – это ограниченность жизненного пространства для тканевых и особенно внутриклеточных обитателей, сложности снабжения кислородом, трудность распространения от одной особи хозяев к другим, а также защитные реакции организма хозяина против паразитов.

Живые организмы не только испытывают воздействия со стороны паразитов и симбинтов, но и энергично реагируют на них. Обитатели такой живой среды должны преодолевать сопротивление организма хозяина, его защитные реакции. Это сопротивление паразитам получило название активного иммунитета. Полноценные, здоровые особи растений и животных часто обладают действенными защитными приспособлениями, не позволяющими проникать в них патогенными организмам. Например, устойчивость хвойных деревьев к нападению столовых вредителей (жуков–короедов, личинок златок, усачей и пр.) обеспечивается прежде всего выделением смолы, которая содержит соединения, токсические для насекомых. У животных защитной реакцией отторжения посторонних организмов является выработка гуморального иммунитета – образование в крови хозяина специфических белковых веществ, антител, подавляющих паразитов.

Недостаток кислорода в тканях и, особенно в желудочно-кишечном тракте организмов-хозяев приводит к тому, что у многоклеточных обитателей внутриорганизменной среды вырабатывается преимущественно анаэробный тип обмена. Необходимая для клеток энергия высвобождается за счет разных видов брожения, а не за счет дыхания.

Среда обитания паразитов ограничена как во времени (жизнью хозяина), так и в пространстве. Поэтому основные адаптации направлены на возможность распространения в этой среде, передачи от одного хозяина к другому. Главнейшие приспособления к этому – повышенная способность к размножению, выработка сложных жизненных циклов, использование переносчиков и промежуточных хозяев. Громадная плодовитость, свойственная паразитам, получила название « закон большого числа яиц». Человеческая аскарида продуцирует в среднем 250 тыс. яиц за сутки, а за свою жизнь – свыше 50 млн. Подавляющее большинство яиц и зародышей паразитов гибнет, не выдержав воздействия различных факторов внешней среды или не попав в очередного хозяина, и только чрезвычайная плодовитость увеличивает шансы на выживание и завершение жизненного цикла хотя бы немногих потомков, поддерживая существование вида.

Отношения между паразитом и хозяином в растительном и животном мире на популяционном и видовом уровнях определенным образом уравновешены. Очевидно, что паразит не может размножаться до такой степени, чтобы привести к вымиранию популяции хозяина и лишить себя среды жизни.


© ФГБОУ ВПО Красноярский государственный аграрный университет

© Центр дистанционного обучения