Начертательная геометрия

электронный учебно-методический комплекс

Тема №2 Проецирование прямой и плоскости

1. Проецирование прямой. Комплексный чертёж прямой

2. Прямые общего и частного положения

3. Способы задания плоскости. Комплексный чертеж плоскости

4. Плоскости общего и частного положения

Контрольные вопросы

Контрольные задания по теме:
Рабочая тетрадь задача 20а, задача 20б, задача 21, задача 22, задача 23


1. Проецирование прямой. Комплексный чертёж прямой

Проекцией прямой, которая не перпендикулярна плоскости проекций, является прямая. Её положение определяется двумя точками, следовательно, для того чтобы построить проекцию прямой, достаточно построить проекции двух её точек.


Рисунок 8

2. Прямые общего и частного положения

а) Прямой общего положения называется прямая, которая не параллельна и не перпендикулярна ни одной из плоскости проекций. Пример такой прямой изображён на рисунке 8. Комплексный чертёж этой прямой будет выглядеть следующим образом.


Рисунок 9

б) Прямые частного положения – это прямые, занимающие по отношению к плоскостям проекций особое положение, т.е. либо параллельные, либо перпендикулярные плоскостям проекций.

Первый подкласс прямых частного положения – прямые уровня. Это прямые, параллельные какой-либо плоскости проекций.

Горизонталь – прямая параллельная горизонтальной плоскости П1. Комплексный чертёж такой прямой изображён на рисунке 10.


Рисунок 10

Фронтальная проекция горизонтали всегда параллельна прямой Х, а угол между осью Х и горизонтальной проекцией горизонтали составляет угол между прямой и фронтальной плоскостью проекций. Символическая запись: h // П1; α = Ðh П2.

Фронталь – прямая параллельная фронтальной плоскости П2. Комплексный чертёж фронтали изображён на рисунке 11.


Рисунок 11

Горизонтальная проекция фронтали параллельна оси Х, а угол β - угол наклона фронтали к горизонтальной плоскости проекций; f2 // П2, β=Ðf1 П1.

Профильная прямая – это прямая, параллельная профильной плоскости П3. Комплексный чертёж профильной прямой изображён на рисунке 12. Горизонтальная и фронтальная проекции профильной прямой перпендикулярны оси Х, а углы α и β - соответственно, углы наклона прямой к плоскостям П1 и П2.


Рисунок 12.

Истинная величина прямых уровня или, так называемая натуральная величина, отображена на тех плоскостях, которым параллельны эти прямые.

Второй подкласс прямых частного положения – проецирующие прямые. Это прямые, перпендикулярные какой-либо плоскости проекций. К таким прямым относятся: горизонтально–проецирующая, фронтально-проецирующая и профильно-проецирующая прямые.

Их комплексные чертежи изображены соответственно на рисунке 13 (а, б, в).


Рисунок 13

Натуральная величина горизонтально-проецирующей прямой – её фронтальная проекция, фронтально-проецирующей прямой – её горизонтальная проекция, а профильно-проецирующей прямой – её горизонтальная и фронтальная проекции.

3. Способы задания плоскости. Комплексный чертеж плоскости

а) три точки, не лежащие на одной прямой;


Рисунок 14

б) прямая и точка, не лежащая на ней;


Рисунок 15

в) две параллельные прямые;


Рисунок 16

г) две пересекающиеся прямые;


Рисунок 17

д) плоская фигура (многоугольник, круг и т.д.).

4. Плоскости общего и частного положения

Плоскость общего положения не параллельна и не перпендикулярна ни одной из плоскостей проекций.


Рисунок 18

Плоскости частного положения аналогично прямой подразделяются на плоскости уровня и проецирующие плоскости. На рисунке 19 (а,б,в) изображены, соответственно, горизонтальная, фронтальная и профильная плоскости. Причём горизонтальная плоскость задана двумя параллельными прямыми, фронтальная и профильная плоскости – двумя пересекающимися прямыми.


Рисунок 19

На рисунке 20 (а, б, в) показаны проецирующие плоскости. Горизонтально-проецирующая (рис. 20а) задана треугольником, фронтально-проецирующая (рис. 20б) - параллельными прямыми и профильно-проецирующая (рис. 20в) – пересекающимися прямыми.


Рисунок 20

Контрольные вопросы

1. Как образуется комплексный чертеж прямой линии?

2. Прямые какого положения вы знаете?

3. Назовите прямые уровня.

4. Как называется прямая, проекцией которой на горизонтальной плоскости будет точка?

5. Перечислите способы задания плоскости.

6. Дайте определение плоскости общего положения.

7. Какие бывают плоскости частного положения? Как они называются и как выглядят на комплексном чертеже?


© ФГБОУ ВПО Красноярский государственный аграрный университет

© Центр дистанционного обучения