Практические задания
Тема 1. Методы начисления банковских процентов
Тема 2. Декурсивный и антисипативный метод начисления процентов
Тема 3. Определение календарной базы начисления простых процентов
Тема 4. Начисление процентов на депозитах до востребования
Тема 5. Начисление процентов при изменении процентной ставки в течение срока
Тема 6. Начисление сложных процентов
Тема 7. Начисление процентов при регулярных взносах
Тема 8. Депозитные и сберегательные сертификаты коммерческих банков
Тема 9. Дисконтирование и банковский учeт
Тема 10. Начисление банковских процентов в условиях инфляции
Тема 1. Методы начисления банковских процентов
Банк это кредитное учреждение, созданное для привлечения денежных средств от юридических и физических лиц и размещение их от своего имени на условиях возвратности, платности и срочности, а также осуществления иных банковских операций.
В структуре средств банков основную часть занимают привлеченные средства. Обычно величина собственного капитала коммерческих банков составляет менее 10% от общей суммы ресурсов.
Привлеченные средства банков можно подразделить на две категории:
- депозиты, включающие средства на различных счетах, а также депозитные сертификаты;
- кредиты Центрального банка, других банков и кредитных учреждений, выпуск долговых обязательств.
За использование кредитных ресурсов банки выплачивают их владельцам доход в виде процентов, который является для банков процентными расходами.
Проценты (процентные деньги) это сумма доходов от предоставления денег в долг в различных формах (открытие депозитных счетов, выдача кредитов, покупка облигаций и др.). Сумма начисленных процентов зависит от суммы долга, срока его выплаты и процентной ставки. Процентные ставки могут выплачиваться по мере их начисления или присоединяться к сумме долга.
В зависимости от способа начисления, проценты делятся на простые и сложные.
Простые проценты это метод начисления, при котором сумма процентов определяется в течение всего периода, исходя из первоначальной величины долга, независимо от количества периодов начисления и их длительности.
Простые проценты начисляются по формуле:
где: Б конечная сумма, полученная вкладчиком (кредитором) по истечению периода Т;
С первоначальная (исходная) сумма вклада (долга);
Т период, в течение которого происходило начисление (в днях);
Тгод количество дней в году. Принимается равным 360 или 365 (в зависимости от метода определения Т);
К норма доходности (ставка процентов по вкладам).
Сложные проценты метод расчета процентов, при котором начисления происходят на первоначальную сумму вклада (долга) и на прирост вклада (долга), т.е. сумму процентов, начисленных после первого периода начисления. Таким образом, база для начисления сложных процентов (в отличие от простых) будет увеличиваться с каждым периодом начисления.
Суть сложных процентов в том, что происходит начисление процента на процент.
Формула сложных процентов имеет следующий вид:
где: Т период начисления в годах.
Кроме основных двух методов начисления банковских процентов существует также третий.
Если срок хранения вклада больше года и не является целым числом лет, то проценты могут начисляться по смешанной ставке.
где: Tl целое число лет в течение срока вклада;
ΔТ остаток периода в годах.
Т = Tl + ΔТ
Начисление смешанных процентов даeт более точный результат, в то время как при сложных процентах итог приближeнный.
Задание
- Требуется обеспечить получение 10000 руб. через полгода. Сколько надо вложить для этой цели денег в коммерческий банк при начислении простых и сложных процентов в размере 15% годовых. Сделать вывод, какой метод более выгоден клиенту.
- Депозит в размере 15000 руб. открыт в банке на 2 года под 20% годовых. Найти сумму начисленных процентов с использованием простой и сложной ставок. Сделать вывод, какой метод более выгоден вкладчику.
- Вкладчик размещает 850 руб. в банке на 1,5 года, проценты начисляются по сложной ставке, которая составляет 21% годовых. Рассчитать сумму начисленных процентов (приближeнное и точное значение).
- Депозитный счет в размере 4000 руб. открыт в коммерческом банке на 3 месяца под 17% годовых. Найти процентный доход, который получит вкладчик при начислении простых и сложных процентов. Сделать вывод.
- Найти, в течение какого количества лет вклад в размере 1500 руб. возрастет до 3000 руб. при начислении процентов по простой ставке, 13% годовых.
- Вкладчик собирается положить в банк сумму 15000 руб. с целью накопления 16500 руб. Ставка процентов будет составлять 21% годовых. Найти срок в днях, за который вкладчик сможет накопить требуемую сумму. Необходимо учесть, что банк использует при расчетах фактическое значение количества дней в году.
- Клиент, решивший внести на депозит 2000 руб., хочет накопить через год не менее 2700 руб. Необходимо найти требуемую простую ставку процентов, на основании которой он может выбрать банк для размещения своих средств.
- Имеются две суммы денег, одна больше другой на 5000 руб.
- бoльшая сумма вложена на 6 месяцев при ставке 5% годовых.
- мeньшая сумма внесена на 3 месяца при ставке 6% годовых.
- процентный доход за б?льшую сумму вдвое больше процентного дохода за мeньшую сумму. Необходимо найти величину этих денежных капиталов.
- На какой временной период должен быть вложен капитал при 12% годовых, чтобы процентный доход был равен тройной сумме капитала?
- Денежная сумма, величиной 10000 руб., внесена в банк на 4 месяца под 10% годовых. Определить величину процентного дохода вкладчика.
- Банк ежегодно начисляет сложные проценты на вклады по ставке 13% годовых. Определить сумму, которую надо положить в банк, чтобы через 3 года накопить 1 млн. руб.
Тема 2. Декурсивный и антисипативный метод начисления процентов
Одним из важнейших свойств денежных потоков является их распределение во времени. С помощью ставки процентов может быть определена как будущая стоимость "сегодняшних" денег (например, если их собираются ссудить), так и настоящая (современная, текущая) стоимость "завтрашних" денег например, тех, которыми обещают расплатиться через год после поставки товаров или оказания услуг. В первом случае речь идeт об операции наращения (начисления), поэтому будущую стоимость денег часто называют наращенной. Во втором случае выполняется дисконтирование или приведение будущей стоимости к еe современной величине (текущему моменту). Такая стоимость денег называется дисконтированной, приведенной или текущей.
Процентная ставка К показывает степень интенсивности изменения стоимости денег во времени и определяется делением процентного дохода на первоначальную сумму.
Процентную ставку используют при определении прироста текущей стоимости, таким образом, К своего рода "наценка".
Наращивание первоначальной суммы с использованием процентной ставки называется декурсивным методом начисления процентов.
Кроме процентной ставки, существует учетная ставка (или ставка дисконта) Куч. Она равна отношению процентного дохода к конечной сумме.
Ставку дисконта используют при определении снижения будущей стоимости, то есть Куч "скидка" biskont (немец.) скидка.
Тем не менее, иногда по учетной ставке производят наращение стоимости. Начисление процентов с применением ставки дисконта (учетной ставки) называется антисипативным методом.
С помощью рассмотренных ставок могут начисляться простые и сложные проценты.
Начисление простых декурсивных процентов:
Начисление простых антисипативных процентов:
где: Куч учетная ставка (ставка дисконта).
Начисление сложных декурсивных процентов:
Начисление сложных антисипативных процентов:
В России в настоящий момент в основном применяется декурсивный метод начисления процентов. Антисипативным методом обычно пользуются в технических целях, например, для определения суммы, дисконтирование которой по заданным учетной ставке и сроку, даст искомый результат.
Задание
- Ссуда в размере 1 млн. руб. выдается на полгода под 30% годовых. Найти сумму начисленных процентов по простой ставке
- декурсивным методом;
- антисипативным методом.
Сделать вывод, какой метод более выгоден заeмщику, кредитору.
- 10000 рублей внесено в банк на 5 лет под 14% годовых. Определить процентный доход от вложения денег при:
- декурсивном способе расчета сложных процентов;
- антисипативном способе расчета сложных процентов.
- Вкладчик собирается положить деньги в банк с целью накопления 800000 руб. через год. Процентная ставка банка 16% годовых. Определить требуемую сумму вклада при использовании антисипативного и декурсивного метода начисления процентов.
- Вкладчик внес 500000 руб. с целью накопления 700000 руб. Определить срок в днях, за который инвестор накопит требуемую сумму по декурсивному и антисипативному методу начисления простых процентов. Процентная ставка банка 14% годовых.
Тема 3. Определение календарной базы начисления простых процентов
В международной банковской практике количество дней в году и в месяцах определяется по-разному.
В германской (коммерческой) практике расчет числа дней основывается на длительности года в 360 дней и месяцев в 30 дней. Сокращенно суть данного метода можно записать:
12 месяцев по 30 дней = 360 / количество дней в году 360
Во французской практике длительность года принимается равной 360 дням, количество дней в месяце соответствует их фактической календарной длительности (28, 29, 30, 31 день).
365 / 360
В английской практике Тгод = 365 (366) дней, продолжительность каждого месяца фактическая.
365 / 365
Исчисляемые по германской базе проценты называются обыкновенными или коммерческими, по английской точными.
Обыкновенные проценты (360/360) более удобно использовать при расчетах. Этим объясняется популярность их применения на практике в большинстве развитых стран, включая США.
В России применяются как обыкновенные (360/360), так и точные проценты (365/365). Точные используются в официальных методиках ЦБР и МФ РФ для расчета доходности по государственным обязательствам. Обыкновенные проценты применяются в основном при проведении операций с векселями.
При определении количества дней для начисления процентов необходимо учесть, что в банках принято день приeма и день выдачи вклада (долга) считать за 1 день.
Задание
- Вклад до востребования был размещен с 20.01.2003 г. по 15.03.2003 г. Найти количество дней для начисления процентов тремя методами. Сделать вывод.
- Вклад размещен с 25.06.2002 г. по 5.09.2002 г. Найти количество дней для начисления процентов, используя германский, французский, английский методы.
- Депозит в размере 1000 руб. открыт в банке 12.03.2000 г. и востребован 25.12.2000 г. Начислялись простые проценты по ставке 19% годовых. Найти сумму начисленных процентов с использованием германской, французской и английской практик определения календарной базы. Сделать вывод, в каком случае вкладчик получит наибольший доход.
- Вклад положен в банк 4.02.2003 г. и изъят 1.06.2003 г. Ставка процентов 12% годовых. Сумма вклада 2000 руб. Банк начисляет обыкновенные проценты. Найти сумму начисленных процентов.
- Вкладчик собирается положить в банк 3000 руб. 1.03.2003 г., чтобы через три месяца накопить 400 руб. Найти требуемую простую ставку процентов по вкладам при условии, что банки рассчитывают календарную базу по английскому методу.
Тема 4. Начисление процентов на депозитах до востребования
Привлечение ресурсов осуществляется банками посредством депозитных операций.
Депозиты (вклады) подразделяются на:
- депозиты до востребования (бессрочные);
- срочные депозиты.
Депозиты до востребования представляют собой средства, которые могут быть востребованы в любой момент без предварительного уведомления банка со стороны клиента. На эти счета денежные средства вносятся или изымаются как частями, так и полностью без ограничений.
Срочные вклады это депозиты, привлекаемые банками на определeнный срок.
На срочных депозитах начисление процентов происходит с использованием ранее рассмотренных формул.
На бессрочных вкладах сумма не постоянна. Поэтому в банках для начисления процентов используют методику с определением процентных чисел. Суть данного метода состоит в том, что при изменении сумму на счете общая сумма процентов за весь срок хранения вклада составляет сумму процентов, начисленных для каждого периода начисления, в котором сумма на счете была постоянна.
Процентное число определяется по формуле:
где: Пч процентное число;
С сумма, находящаяся на счете;
Т период в днях, в течение которого на счете хранилась фиксированная сумма С.
Для определения суммы начисленных процентов все процентные числа складываются и их сумма делится на постоянный делитель
где: Пд постоянный делитель;
Т количество дней в году (зависит от метода определения Т);
К годовая ставка процентов.
Задание
- При открытии сберегательного счета по ставке 4% годовых 20.05.2002 г. на счет положено 1000 руб. Затем 5.07.2002 г. на счет добавлено 500 руб., 10.09.2002 г. со счета снято 750 руб., а 20.11.2002 г. счет был закрыт. Найдите сумму начисленных процентов, если использовались обыкновенные (коммерческие проценты).
- При открытии счета до востребования 10.12.2002 г. клиентом была внесена сумма в размере 5000 руб. под 4,5% годовых. 1.02.2003 г. на счет добавлено 1560 руб., 10.02.2003 г. ещe плюс 1400 руб. Вкладчик хочет закрыть счет 7.03.2003 г. Сколько денег он получит при его закрытии, если календарная база определяется по французской практике?
- 4 января 2003 г. на счет была внесена сумма 600 руб. под 3% годовых. 9 февраля 2003 г. со счета было снято 250 руб. 28 февраля 2003 г. вкладчик внeс 500 руб.; 10 марта внeс ещe 1400 руб. Клиент собирается закрыть счет 1.06.2003 г. Найти, какую сумму он получит при закрытии счета. Начисляются точные проценты.
- При открытии бессрочного счета в коммерческом банке "Енисей" 4.03.98 г. было внесено 2000 руб. Затем 5.04.98 г. клиент внeс ещe 1000 руб. 15.06.98 г. клиент внeс ещe 1000 руб. 15.06.98 г. со счета снято 3000 руб., 20.07.98 счет был закрыт. Определить сумму, которую получит вкладчик при закрытии счета. Начислялись простые проценты 4% годовых. Срок хранения вклада определяется по французскому методу.
Тема 5. Начисление процентов при изменении процентной ставки в течение срока
Существует два вида процентных ставок:
- фиксированная;
- плавающая.
Фиксированная это неизменная процентная ставка на весь период хранения вклада или действия кредитного соглашения.
Плавающая это ставка процентов, изменяющаяся в течение периода. С использованием плавающей ставки могут начисляться простые и сложные проценты.
Конечная сумма, полученная вкладчиком при начислении сложных процентов по плавающей ставке, определяется:
где: К1, К2, Кn последовательные значения процентных ставок;
Т1, Т2, Тn периоды, в течение которых действуют соответствующие ставки К1, К2, Кn.
Начисление простых процентов с применением плавающей ставки осуществляется по формуле:
Задание
- Ставка процентов по вкладам до востребования, составляющая в начале года 10% годовых, через полгода была уменьшена до 7% годовых, а ещe через 3 месяца до 4% годовых. Найти сумму начисленных процентов на вклад 1000 руб. за год. Начисление производилось с использованием простой ставки.
- Вклад 800 руб. положен в банк 25.05.97 г. по ставке 30% годовых. С 1.07.97 г. банк снизил ставку по вкладам до 23% годовых и 15.07.97 г. вклад был закрыт. Количество дней для начисления процентов определялось по английскому методу. Найти сумму, полученную вкладчиком при закрытии счета.
- Процентная ставка по ссуде определена на уровне 10% годовых, плюс маржа 10% годовых за первый год и 20% годовых в последующие два года. Ссуда дана на 20000 руб. под сложные проценты. Найти сумму, которую должен вернуть заeмщик по истечению трeх лет.
- По условиям кредитного договора ставка простого процента в первом месяце пользования кредитом составила 15% годовых, в каждом последующем месяце она увеличивалась на 2%. Кредит предоставлен в размере 50000 рублей на 6 месяцев. Начисляются точные проценты.
- Инвестор, полученную через полгода сумму от ссуды в $ 1000000 под 8% годовых, снова реинвестирует в банк на год под 12% годовых. Найти процентный доход инвестора за 1,5 года.
Тема 6. Начисление сложных процентов
Сложные проценты могут начисляться несколько раз в году (например, по месяцам, по кварталам, по полугодиям). В этих случаях необходимо задавать ставку процентов за период, или годовую ставку процентов, на основе которой будет определяться ставка процентов за период начисления (номинальную ставку процентов).
Сумма вклада с процентами будет определяться:
где: К номинальная годовая ставка процентов;
m количество периодов начисления за год;
T·m количество периодов начисления в течение срока хранения вклада.
Задание
- Сложные проценты на вклады начисляются ежеквартально по номинальной годовой ставке 24%. Найти сумму процентов, начисленных на вклад 1700 руб. за 1 год.
- Сложные проценты начисляются по полугодиям по ставке 21% годовых. Найти необходимую сумму вклада для накопления через три квартала 1500 руб.
- Вкладчик внeс в банк 5000 руб. под 11% годовых 1.12.2002 г. Депозитный договор заключен до 1.06.2003 г. Календарная база определяется по английской практике. Необходимо определить, при каком методе расчета суммы процентов вкладчик получит максимальный доход. Варианты начисления:
- простые проценты;
- сложные проценты с ежемесячными начислениями;
- сложные проценты с начислениями процентов в конце срока;
- сложные проценты с начислениями 1 раз в квартал.
- Сложные проценты на вклады начисляются ежеквартально по годовой ставке 27%. Найти сумму процентов, начисленных на вклад в 5000 руб. через два квартала.
- Клиент открыл срочный депозит на полгода под 18% годовых. Банк предлагает несколько вариантов начисления процентов:
- сложные проценты с ежеквартальным начислением;
- простые проценты с начислением один раз в конце срока;
- сложные проценты с ежемесячным начислением;
- сложные проценты с начислением 1 раз в конце срока.
Найти, какой из представленных методов принесeт вкладчику наибольший доход.
- Если сложные проценты на вклад начисляются ежемесячно по годовой ставке 9%, то какой должна быть сумма вклада для накопления через 1 квартал 2000 руб.?
- У юридического лица имеются временно свободные денежные средства в размере 200000 рублей сроком на 3 месяца. Банк предлагает ему приобрести депозитный сертификат банка с выплатой 14% годовых по окончании срока либо поместить деньги на депозитный вклад с начислением процентов по фиксированной процентной ставке 9,5% годовых. Проценты по вкладу начисляются ежемесячно и капитализируются. Определить, какую сумму процентов может получить вкладчик в том и другом случае.
Тема 7. Начисление процентов при регулярных взносах
Вкладчик может открывать депозитный счет и вносить на него регулярно одинаковые суммы через одинаковые периоды. Тогда размер начисленных процентов на средства клиента зависит от того:
- когда была внесена сумма (в конце или начале расчетного периода);
- как часто вносятся средства;
- как банк производит начисление процентов.
Если ежегодно в конце каждого года в течение нескольких лет на депозитный счет будет поступать одинаковая сумма, а проценты на хранящуюся сумму будут начисляться по сложной ставке, то при закрытии счета вкладчик получит:
где: Б конечная сумма (средства вкладчика и начисленные проценты на них);
А размер ежегодных взносов;
К процентная ставка по вкладам;
Т срок хранения вклада (в годах).
Если одинаковые суммы будут поступать на депозит в начале каждого года, то сумма накоплений за несколько лет определяется:
Если клиент производит взносы на депозитный счет несколько раз в году в начале каждого расчетного периода, и на них начисляются сложные проценты несколько раз в год, то конечная сумма, полученная вкладчиком, определяется:
где: R размер периодических взносов вкладчика, сделанных им несколько раз в год;
р количество взносов в году;
m количество начислений сложных процентов в год;
Т срок хранения вклада в годах;
К процентная ставка.
Если взносы будут поступать на счет несколько раз в год в конце расчетных периодов (в конце каждого месяца, квартала и т.д.) и на сумму на счете несколько раз в год будут начисляться сложные проценты, то по истечению всего срока хранения вклада клиент получит сумму:
Таким образом, получение и погашение долгосрочного кредита, погашение различных видов задолженности, денежные показатели инвестиционного процесса предусматривают не отдельные разовые платежи, а множество распределeнных во времени выплат и поступлений, называемых потоком платежей. Специальный поток платежей, в котором временные интервалы между двумя последовательными равными платежами постоянны, называется финансовой рентой или аннуитетом. Финансовая рента возникает, например, при выплате процентов по облигациям либо при погашении потребительского кредита.
Задание
- На депозитный счет в начале каждого квартала будут вноситься 300 рублей. На них один раз в полугодие будут начисляться сложные проценты по годовой ставке 25%. Найдите сумму начисленных процентов за 1,5 года.
- На депозит в течение 3 лет (5 лет, 7 лет) будет ежегодно в конце года вноситься 500 рублей, на которые будут начисляться сложные проценты по ставке 31% годовых. Найти размер начисленных процентов за 3 года, 5 лет, 7 лет.
- Вкладчик в конце каждого квартала вносит 200 рублей, на которые ежеквартально начисляются сложные проценты по ставке 18% годовых. Найти, сколько составят накопления вкладчика через два года.
- На суммы, вносимые в конце каждого квартала на депозитный счет по полугодиям будут начисляться проценты по сложной ставке 21% годовых. Найти размер квартальных взносов, если требуется накопить 10000 рублей за 1 год.
- В банке клиенту предложили производить ежегодные взносы в размере 1000 рублей либо в начале года, либо в конце. Начисления будут происходить по сложной ставке 17% годовых. Какой вариант обеспечит получение клиентом наибольшего дохода?
- Взносы на депозитный счет будут производиться в начале каждого квартала, и на них по полугодиям будут начисляться сложные проценты по ставке 20% годовых. Найти размер взносов, необходимых для накопления 5000 рублей за 1 год 3 месяца.
- Клиент изъявил желание каждые три месяца вносить 2000 рублей на депозитный счет. Необходимо найти, когда это более выгодно делать, в начале или в конце квартала. Следует учесть, что банк начисляет сложные проценты в размере 24% годовых ежеквартально. Срок хранения вклада 1 год.
- На сберегательный счет в течение 5 лет каждые полгода будут вноситься 50000 руб., на которые раз в год будут начисляться сложные проценты по ставке 10% годовых. Определить сумму процентов, которую банк выплатит владельцу счета.
- В Пенсионный фонд в конце каждого квартала будут вноситься 5000 руб., на которые также ежеквартально будут начисляться сложные проценты по номинальной годовой ставке равной 8%. Определить сумму, накопленную в фонде за 20 лет.
- Инвестор в течение 10 лет в конце каждого года получает сумму 50000 руб. и размещает каждый платeж до окончания десятилетнего периода под 9% годовых. Определить будущую стоимость аннуитета.
Тема 8. Депозитные и сберегательные сертификаты коммерческих банков
Депозитный (сберегательный) сертификат ценная бумага, удостоверяющая о том, что у еe держателя открыт срочный депозит в банке. Сертификат даeт право на получение по истечении установленного срока суммы вклада и указанных в нeм процентов.
Если в качестве вкладчика выступает юридическое лицо, то оформляется депозитный сертификат (ДС), если физическое лицо сберегательный (СС). При этом владельцем депозитного сертификата могут быть юридические лица, зарегистрированные на территории Российской Федерации или иного государства, использующего рубль в качестве официальной денежной единицы.
Депозитные и сберегательные сертификаты могут выпускаться только банками. В настоящий момент существуют определeнные ограничения по составу коммерческих банков, которые могут эмитировать сберегательные сертификаты.
Срок обращения депозитных сертификатов ограничивается одним годом. Все расчеты по ним происходят в безналичном порядке. Срок обращения сберегательных сертификатов не может превышать трeх лет, расчеты по ним могут происходить как в наличной, так и безналичной формах.
Депозитные сертификаты имеют ряд существенных преимуществ перед срочными депозитами:
- Клиенты могут продавать их до истечения срока хранения вклада.
- Депозитные сберегательные сертификаты используют для оплаты товаров и услуг (в России по существующему положению это пока не разрешено).
Депозитные сертификаты по способу получения дохода их владельцами подразделяются на два вида процентные и дисконтные. По процентным депозитным сертификатам начисляются простые проценты аналогично их начислению по депозитным счетам (формула 1).
Депозитные сертификаты дисконтного типа продаются по цене ниже номинала, а погашаются по номиналу. Доходы владельца ДС определяются как разница (дисконт) между номиналом сертификата и ценой его покупки. Расчет цены осуществляется с применением формулы дисконтирования по простой ставке процентов.
где: Р цена продажи депозитного сертификата дисконтного типа коммерческим банком.
Расчет дохода по сберегательным сертификатам со сроком обращения до 1 года происходит с применением формулы простых процентов. При этом начисляются точные проценты.
Если срок депозита превышает 1 год, то начисляются сложные проценты. Таким образом, определяется доход по сберегательным сертификатам Сберегательного банка РФ.
Если инвестор покупает сертификат не у эмитента, а на вторичном рынке и через некоторое время вновь продаeт его, то цена продажи определяется:
где: Р1 сумма покупки сертификата;
Р2 сумма продажи сертификата;
Т период владения сертификатом в днях;
Тгод количество дней в году;
К процентная ставка по данному вложению.
Тогда доходность этой операции инвестора составит:
Если инвестор, купив сертификат у эмитента, не дожидается его погашения, а перепродаeт его через определeнный период времени на вторичном рынке другому инвестору, то цена покупки сертификата у первого инвестора определяется:
где: Р1 цена покупки сертификата у первого инвестора;
С номинал сертификата;
Т общее время обращения сертификата в днях;
Тпог время, оставшееся для погашения сертификата;
КЭ процентная ставка, установленная при эмиссии сертификата;
Кинв доходность вложений в сертификат последующего инвестора.
Доходность вложений в сертификат для первого инвестора можно вычислить следующим образом:
где: Кинв доходность операций с сертификатом для первого инвестора;
Тгод количество дней в году;
Т1 время владения сертификатом первым инвестором.
Задание
- Банк выпустил процентные депозитные сертификаты номиналом 600 рублей на срок три месяца с начислением процентов по ставке 13% годовых. Найти процентные расходы банка.
- Банк эмитировал депозитные сертификаты дисконтного типа номиналом 850 руб. на 9 месяцев. На них начисляются простые проценты в размере 14% годовых. Найти: 1. Цену продажи депозитных сертификатов; 2. Доходы владельца ценной бумаги.
- Инвестор приобрeл одномесячный депозитный сертификат на 100000 руб. по цене 102000 руб., который продал через 12 дней за 103750 руб. Найти доходность операции купли-продажи депозитного сертификата.
- Инвестор приобрел 5 января 1998 года сберегательный сертификат банка номиналом 2000 руб. с погашением 8 июля 1998 года и процентной ставкой 25% годовых. Какую сумму получит инвестор при погашении сертификата?
- Депозитный сертификат был куплен за 7 месяцев до срока его погашения по цене 1000 рублей и продан за 4 месяца до срока погашения по цене 1173 рубля. Определить доходность данной операции инвестора в пересчете на год, без учета налогов.
- Вкладчик купил за 1000 руб. сберегательный сертификат Сбербанка РФ на 3 года. Проценты, начисляемы по ставке 28% годовых, начисляются один раз в год и капитализируются. Найти, какую сумму получит инвестор по окончании срока депозитного договора.
- Инвестор приобрел у банка сертификат 2 января 2000 года номиналом 3000 рублей со сроком обращения до 1 октября и процентной ставкой 24% годовых. Через 60 дней конъюнктура денежного рынка изменилась, ставки упали, и на вторичном рынке нашелся покупатель, которого устраивал доход по вложению 15% годовых. Найти цену продажи сертификата и доход юридического лица с учетом налогообложения.
Тема 9. Дисконтирование и банковский учeт
Обратной операцией по отношению к начислению процентов является расчет современной стоимости будущих денег дисконтирование.
В зависимости от того, какая ставка (процентная или учетная) применяется для дисконтирования, различают два его типа:
- математическое дисконтирование;
- банковский учeт.
При математическом дисконтировании используются простая и сложная процентные ставки. Расчеты выполняются по формулам:
Метод банковского учeта используется при осуществлении банками учeтных операций с векселями.
Вексель это ценная бумага установленной формы, содержащая безусловное денежное обязательство. Вексель является объектом купли-продажи, и его цена меняется в зависимости от изменения учетной ставки и оставшегося срока до платежа по векселю. На векселе указывается срок платежа, место платежа, наименование того, кому, или по приказу кого платеж должен быть совершен, указаны дата и место составления векселя, имеется подпись лица, выдавшего документ.
Простой вексель (соло-вексель) это ничем не обусловленное бесспорное обещание должника уплатить определeнную сумму по истечении срока векселя.
Переводной вексель (тратта) это письменное требование уплатить определeнную сумму. Выдача переводного векселя называется трассированием. Лицо, которое выписывает вексель трассант; лицо, на которое выдан вексель, и которое должно произвести по нему платeж трассат; лицо, на имя которого должник должен произвести платeж ремитент.
Характерной деятельностью банков является учeт векселей. Владелец (простого или переводного) векселя может не ждать наступления срока платежа по векселю, а продать, а продать вексель банку, т.е. учесть вексель. Банк хранит вексель и при наступлении назначенного срока предъявляет его к платежу. За свою услугу банк удержит с продавца векселя определeнный процент от вексельной суммы за еe досрочное получение. Этот процент называется дисконт. Для определения цены и суммы дисконта используется учeтная ставка.
Дисконт по учeту векселей рассчитывается по формуле:
где: Н номинал векселя;
Т период в днях с момента принятия векселя к учeту до его погашения;
Куч учeтная ставка банка (в процентах).
Цена, по которой векселедержатель продаeт вексель банку, определяется как разница между номиналом векселя и суммой дисконта.
Задание
- Вексель номиналом 100000 руб. со сроком погашения 6 сентября учтен 3 июня при 9% годовых. Определите: сумму дисконта; дисконтированную стоимость векселя.
- 10 апреля был учтен вексель со сроком погашения 9 июня. Найти номинал векселя, если учeтная ставка банка 6% годовых, а векселедержатель получил 10 апреля 59400 руб.
- Покупатель обязуется оплатить поставщику стоимость закупленных товаров через 90 дней после поставки в сумме 1000000 руб. Уровень простой процентной ставки составляет 30% годовых. При начислении используются обыкновенные проценты. Найти:
- текущую стоимость товаров методом математического дисконтирования;
- текущую стоимость товаров методом банковского учeта;
- определить, какой вариант является более выгодным для кредитора.
- Тратта выдана на 10000000 руб. с уплатой 23 ноября. Владелец документа учeл его в банке 23 сентября. Учeтная ставка равна 8% годовых. Найти сумму, которую выплатит банк при учeте векселя.
- Через полгода заeмщик должен уплатить 1000000 руб. Ссуда выдана под 20% годовых. Найти, какую сумму получит заeмщик при заключении сделки
- при математическом дисконтировании;
- при банковском учeте.
- Предприятие досрочно предъявило в банк к оплате купленный ранее дисконтный вексель этого банка. Срок платежа по векселю наступит через 10 дней. Номинал векселя равен 50 млн. руб. Учeтная ставка 16% годовых. Требуется:
- рассчитать сумму дисконта по векселю;
- определить сумму, которую банк заплатит по векселю.
Тема 10. Начисление банковских процентов в условиях инфляции
На размер процентных ставок коммерческих банков большое влияние оказывает уровень инфляции, приводящий к обесцениванию денежных доходов. Если рост инфляции выше роста доходов вкладчиков, определяемых предлагаемыми банком процентными ставками, вкладчики могут выбрать более доходный источник инвестирования своих временно свободных денежных средств. При количественной оценке инфляции используют два показателя уровень и индекс инфляции.
Уровень инфляции (UТ) показывает, на сколько процентов выросли цены за рассматриваемый период времени. Индекс инфляции (IТ) показывает, во сколько раз выросли цены за этот же период времени. Индекс можно выразить следующим образом:
где: Т анализируемый период в месяцах.
Тогда реальное значение будущей суммы с учетом инфляции за рассматриваемый срок определяется:
где: Бp реальное значение полученной суммы вкладчиком с учетом еe покупательной способности;
Б сумма, выданная банком клиенту в день закрытия депозитного счета;
IТ индекс инфляции за период Т.
Задание
- Среднемесячный уровень инфляции составляет 7%. Найти индекс инфляции за год.
- Вклад в сумме 80000 рублей внесен в банк на полгода с ежемесячным начислением сложных процентов по годовой ставке 120%. Средний уровень инфляции составил 10% в месяц. Найти реальный доход вкладчика с точки зрения его покупательной способности.
- На взносы на депозитный счет, вносимые в конце каждого квартала по полугодиям будут начисляться сложные проценты по ставке 19% годовых. Размер квартальных взносов 3000 руб. Найти реальное значение полученной суммы с учетом инфляции, если уровень инфляции 1,5% в месяц. Срок хранения вклада 1 год.
- По полугодиям начисляются сложные проценты по ставке 43% годовых. Найти размер квартальных взносов, если будет накоплено через год 5000 рублей. Учесть, что суммы вносятся в конце квартала. Рассчитать реальное значение полученной суммы, если уровень инфляции в среднем составил 4,5% в месяц.
- В сбербанк клиент внес 10000 рублей под 14% годовых. Ожидаемый ежемесячный уровень инфляции в 2003 г. 1,8%. Найти, обеспечивает ли банк сохранность средств вкладчика.
- Вкладчик внeс в Сбербанк 1 июля 2000 года 15000 руб. на полгода. Банк обещает начислить проценты по ставке 16% годовых. Найти реальный доход вкладчика с учeтом инфляции, если в федеральном бюджете на 2000 год запланирован средний уровень инфляции 1,5% в месяц. Банк предлагает следующие варианты начисления:
- простые проценты;
- сложные проценты;
- ежеквартальное начисление сложных процентов.
- При открытии счета до востребования 10.09.00 г. была внесена сумма 1800 руб. под 3% годовых; 15.10.00 г. было добавлено ещe 600 руб.; 30.10.00 г. ещe плюс 1500 руб.; 30.11.00 вкладчик снял 850 руб.; 15.12.00 г. добавил 1000 руб. Счет был закрыт 08.01.01 г. Среднемесячный уровень инфляции за период действия депозитного договора 12%. Найти реальный доход вкладчика.
- Вклад в сумме 500000 руб. положен в банк на 2 года с ежеквартальным начислением сложных процентов по номинальной годовой ставке 10%. Определить реальный доход вкладчика для ожидаемого месячного уровня инфляции 1,5% и 2%.
|