C.3. Тема 3. Классификация систем

Классификацию систем можно осуществить по разным критериям. Проводить ее жестко - невозможно, она зависит от цели и ресурсов. Приведем основные способы классификации (возможны и другие критерии классификации систем).

1.     По отношению системы к окружающей среде:

·         открытые (есть обмен ресурсами с окружающей средой);

·         закрытые (нет обмена ресурсами с окружающей средой).

2.     По происхождению системы (элементов, связей, подсистем):

·         искусственные (орудия, механизмы, машины, автоматы, роботы и т.д.);

·         естественные (живые, неживые, экологические, социальные и т.д.);

·         виртуальные (воображаемые и, хотя реально не существующие, но функционирующие так же, как и в случае, если бы они существовали);

·         смешанные (экономические, биотехнические, организационные и т.д.).

3.     По описанию переменных системы:

·         с качественными переменными (имеющие лишь содержательное описание);

·         с количественными переменными (имеющие дискретно или непрерывно описываемые количественным образом переменные);

·         смешанного (количественно-качественное) описания.

4.     По типу описания закона (законов) функционирования системы:

·         типа "Черный ящик" (неизвестен полностью закон функционирования системы; известны только входные и выходные сообщения);

·         не параметризованные (закон не описан; описываем с помощью хотя бы неизвестных параметров; известны лишь некоторые априорные свойства закона);

·         параметризованные (закон известен с точностью до параметров и его возможно отнести к некоторому классу зависимостей);

·         типа "Белый (прозрачный) ящик" (полностью известен закон).

5.     По способу управления системой (в системе):

·         управляемые извне системы (без обратной связи, регулируемые, управляемые структурно, информационно или функционально);

·         управляемые изнутри (самоуправляемые или саморегулируемые - программно управляемые, регулируемые автоматически, адаптируемые - приспосабливаемые с помощью управляемых изменений состояний, и самоорганизующиеся - изменяющие во времени и в пространстве свою структуру наиболее оптимально, упорядочивающие свою структуру под воздействием внутренних и внешних факторов);

·         с комбинированным управлением (автоматические, полуавтоматические, автоматизированные, организационные).

Система называется большой, если ее исследование или моделирование затруднено из-за большой размерности, т.е. множество состояний системы S имеет большую размерность. Какую же размерность нужно считать большой? Об этом мы можем судить только для конкретной проблемы (системы), конкретной цели исследуемой проблемы и конкретных ресурсов.

Большая система сводится к системе меньшей размерности использованием более мощных вычислительных средств (или ресурсов) либо разбиением задачи на ряд задач меньшей размерности (если это возможно).

Определения сложности - различны.

Система называется сложной, если в ней не хватает ресурсов (главным образом, информационных) для эффективного описания (состояний, законов функционирования) и управления системой - определения, описания управляющих параметров или для принятия решений в таких системах (в таких системах всегда должна быть подсистема принятия решения).

Сложной считают иногда такую систему, для которой по ее трем видам описания нельзя выявить ее траекторию, сущность, и поэтому необходимо еще дополнительное интегральное описание (интегральная модель поведения, или конфигуратор) - морфолого-функционально-инфологическое.

Пример. Сложными системами являются, например, химические реакции, если их исследовать на молекулярном уровне; клетка биологического образования, взятая на метаболическом уровне; мозг человека, если его исследовать с точки зрения выполняемых человеком интеллектуальных действий; экономика, рассматриваемая на макроуровне (т.е макроэкономика); человеческое общество - на политико-религиозно-культурном уровне; ЭВМ (особенно пятого поколения) как средство получения знаний; язык - во многих аспектах его рассмотрения.

В сложных системах результат функционирования не может быть задан заранее, даже с некоторой вероятностной оценкой адекватности. Причины такой неопределенности - как внешние, так и внутренние, как в структуре, так и в описании функционирования, эволюции. Сложность этих систем обусловлена их сложным поведением. Сложность системы зависит от принятого уровня описания или изучения системы - макроскопического или микроскопического. Сложность системы может определяться не только большим количеством подсистем и сложной структурой, но и сложностью поведения.

Сложность системы может быть внешней и внутренней.

Внутренняя сложность определяется сложностью множества внутренних состояний, потенциально оцениваемых по проявлениям системы и сложности управления в системе.

Внешняя сложность определяется сложностью взаимоотношений с окружающей средой, сложностью управления системой, потенциально оцениваемых по обратным связям системы и среды.

Сложные системы бывают разных типов сложности:

структурной или организационной (не хватает ресурсов для построения, описания, управления структурой);

динамической или временной (не хватает ресурсов для описания динамики поведения системы и управления ее траекторией);

информационной или информационно-логической, инфологической (не хватает ресурсов для информационного, информационно-логического описания системы);

вычислительной или реализации, исследования (не хватает ресурсов для эффективного прогноза, расчетов параметров системы, или их проведение затруднено из-за нехватки ресурсов);

алгоритмической или конструктивной (не хватает ресурсов для описания алгоритма функционирования или управления системой, для функционального описания системы);

развития или эволюции, самоорганизации (не хватает ресурсов для устойчивого развития, самоорганизации).

Чем сложнее рассматриваемая система, тем более разнообразные и более сложные внутренние информационные процессы приходится актуализировать для того, чтобы была достигнута цель системы, т.е. система функционировала или развивалась.

Сложность системы определяется целями и ресурсами (набором задач, которые она призвана решать).

Система называется связной, если любые две подсистемы обмениваются ресурсом, т.е. между ними есть некоторые ресурсоориентированные отношения, связи.

В последнее время стали различать так называемые "жесткие" и "мягкие" системы, в основном, по используемым критериям рассмотрения.

Исследование "жестких" систем обычно опирается на категории: "проектирование", "оптимизация", "реализация", "функция цели" и другие. Для "мягких" систем используются чаще категории: "возможность", "желательность", "адаптируемость", "здравый смысл", "рациональность" и другие. Методы также различны: для "жестких" систем - методы оптимизации, теория вероятностей и математическая статистика, теория игр и другие; для "мягких" систем - многокритериальная оптимизация и принятие решений (часто в условиях неопределенности), метод Дельфи, теория катастроф, нечеткие множества и нечеткая логика, эвристическое программирование и др.