ПАРАМЕТРЫ КОЛЕСНЫХ ТРАКТОРОВ ДЛЯ ТЕХНОЛОГИЙ ПОЧВООБРАБОТКИ

Селиванов Н.И., Аверьянов В.В. Красноярский государственный аграрный университет, Красноярск, Россия

В статье обосновано рациональное соотношение эксплуатационных параметров колесных тракторов при использовании в ресурсосберегающих технологиях основной обработки почвы.

Ключевые слова: технология, почвообработка, трактор, удельная масса, мощность, производительность, затраты.

PARAMETERS OF WHEEL TRACTORS FOR TILLAGE TECHNOLOGIES

Selivanov N. I., Averyanov V. V. Krasnoyarsk state agrarian university, Krasnoyarsk, Russia

The article substantiates the rational ratio of operational parameters of wheeled tractors when used in resource-saving technologies of the main tillage.

Key words: technology, tilling, tractor, weight, power, performance, costs.

Техническое обеспечение операционных технологий основной обработки эксплуатации определяется особенностями региона производственных условий, которые оказывают наиболее существенное влияние на показатели работы агрегатов. При этом основные природные факторы (длина гона и физико-механические свойства почвы) определяют рациональные типоразмеры тракторов и рабочих машин, формирующих систему технического обеспечения растениеводства. производственных факторов наибольшее влияние на показатели агрегатов оказывают технологии основной почвообработки, которые в разных хозяйствах и зонах могут применяться независимо от природных нормообразующих факторов. Эффективность ИХ реализации зависит основном технологической адаптации трактора, которая определяет потенциальные возможности агрегата.

Цель работы — определить рациональное соотношение эксплуатационных параметров колесных 4к4 тракторов при использовании в технологиях почвообработки разных по энергоемкости групп.

В таблице 1 приведены основные характеристики удельного сопротивления (K_0 , ΔK , ν_{Ko}) и рекомендуемые по агротехническим требованиям скоростные интервалы V_a технологического процесса основных операций и типов рабочих машин для каждой из трех групп технологий [1] с установленным соотношением (F_1 , F_2 , F_3) их объёмов.

Таблица 1 – **Характеристики технологий и почвообрабатывающих** машин

Технология	F, %	Вид операции	Тип рабочей машины	<i>K</i> ₀ , кН∕м	$\frac{\Delta K}{c^2/M^2}$	$ u_{Ko}$	<i>V</i> _a , м/с
1.Традиционная	15	Вспашка отвальная, (h=0,12-0,23 м)	Плуг оборотный ПЛН	12,0- 14,0	0,13- 0,14	0,10	2,0- 2,4
2.Минимальная	30	Безотвальная обработка, (h=0,14-0,16 м)	Агрегат комбинированн ый,«Лидер»	4,7- 6,5	0,08-0,09	0,07- 0,10	2,4- 3,0
3. Нулевая	55	Поверхностная обработка, (h=0,06-0,12 м)	Дискатор БДМ	3,9- 5,1	0,04- 0,06	0,07- 0,10	2,8- 3,6

Сравнительная оценка эффективности технического обеспечения технологий основной почвообработки разных групп выполнена при установленных номинальных значениях рабочей скорости соответствующих агрегатов $V_{\mathrm{H}i}^*$ [1,2]. Соотношение обобщенных показателей эффективности агрегатов (чистой производительности W и удельных энергозатрат E_Π) определено для трех вариантов эксплуатационных параметров (массы $m_{\mathfrak{I}}$ и энергетического потенциала $\xi_{\overline{N}} \cdot N_{\mathrm{e}\mathfrak{I}}$ при $\xi_{\overline{N}} = 1,0$) трактора:

- 1) базовый при $\lambda m_{\ni i} = m_{\ni i}/m_{\ni 1} = \lambda m_{\ni} = \lambda N e_{\ni i} = N e_{\ni i}/N e_{\ni 1} = 1,0$ для соотношений номинальных значений тягового КПД на операциях $\lambda \eta_{\rm T2} = \lambda \eta_{\rm TH2}/\lambda \eta_{\rm TH1} = 0,985$, $\lambda \eta_{\rm T3} = \lambda \eta_{\rm TH3}/\lambda \eta_{\rm H1} = 0,955$;
- 2) с изменением удельной $m_{yд}$ и эксплуатационной m_{9} массы $\lambda m_{yдi} = m_{yдi}^*/m_{yд1} = \lambda m_{9i} = m_{9i}^*/m_{91}$ при $\lambda Ne_{9i} = 1,0;$
- 3) с повышением эксплуатационной мощности $\lambda N e_i = N e_{\ni i}/N e_{\ni 1} = 1/\lambda m_{\rm уд}$ при $\lambda m_{\ni} = 1,0.$

Учитывая взаимосвязь удельной и эксплуатационной масс

$$m_{\mathfrak{I}} = m_{\mathfrak{I}\mathfrak{I}} \cdot \xi_{\overline{N}} \cdot Ne_{\mathfrak{I}}, \tag{1}$$

их оптимальное (*) соотношение для операций разных групп при обоснованных значениях коэффициента использования веса $\lambda \varphi_{\text{кр}i} = \varphi_{\text{кр}hi}/\varphi_{\text{кр}h1}$

$$\lambda m_{\ni i}^* = m_{\ni i}^* / m_{\ni 1}^* = m_{y \neq i}^* / m_{y \neq 1}^* = \lambda \eta_{\text{T}i} / \lambda \varphi_{\text{KP}i} \cdot V_{\text{H}i}^*. \tag{2}$$

Обобщенные показатели технологических свойств трактора: производительность W, M^2/c ; удельных энергетические $E_{\rm II}$, $\kappa \not\square \mathscr{M} \mathscr{M}^2$ и топливные g_{w} , $\kappa z/za$ затраты, а также ширина захвата агрегата B_{p} , M, их соотношение для разных технологий почвообработки и вариантов эксплуатационных параметров выразятся как

$$\begin{cases} W = \xi_{\overline{N}} \cdot Ne_{\mathfrak{I}} \cdot \eta_{\mathtt{T}} / K_{0} \cdot \mu_{K}; \\ E_{\Pi} = \xi_{\overline{N}} \cdot Ne_{\mathfrak{I}} / W = K_{0} \cdot \mu_{K} / \eta_{\mathtt{T}}; \\ g_{w} = 2,77 \cdot g_{\mathtt{eH}} \cdot E_{\Pi} = 2,77 \cdot g_{\mathtt{eH}} \cdot K_{0} \cdot \mu_{K} / \eta_{\mathtt{T}}; \\ B_{p} = W / V_{\mathtt{H}} = \xi_{\overline{N}} \cdot Ne_{\mathfrak{I}} \cdot \eta_{\mathtt{T}} / K_{0} \cdot \mu_{K} \cdot V_{\mathtt{H}}, \end{cases}$$
(3)

$$\begin{cases} \lambda W_{i} = W_{i}/W_{1} = \lambda N e_{s} \cdot \lambda \eta_{T}/\lambda K_{0} \cdot \lambda \mu_{K}; \\ \lambda E_{\Pi i} = E_{\Pi i}/E_{\Pi 1} = \lambda K_{0} \cdot \lambda \mu_{K}/\lambda \eta_{T}; \\ \lambda B_{p i} = B_{p i}/B_{p 1} = \lambda W_{i}/\lambda V_{H}, \end{cases}$$

$$(4)$$

где
$$\mu_{\text{\tiny K}} = 1 + \Delta K (V_{\text{\tiny H}}^2 - 1,96)$$

В приведенных выражениях и далее индекс (1) отнесен к параметрам и показателям агрегата для операций почвообработки первой группы.

Полученные по результатам моделирования соотношения показателей эффективности и параметров почвообрабатывающих агрегатов на базе колесных 4к4 тракторов (табл.2) позволили установить значительное преимущество технологических операций второй и третьей групп независимо от изменения параметров трактора.

Таблица 2 — Соотношение показателей эффективности почвообрабатывающих агрегатов при изменении параметров колесного 4к4 трактора

Группа и вид операций	$V_{\scriptscriptstyle m H}^*$, $_{\scriptscriptstyle M}/c$	Вариант параметров	$\lambda m_{\scriptscriptstyle \Im}$	$\lambda m_{ m yg}$	$\lambda Ne_{\scriptscriptstyle 9}$	λW	$\lambda E_{\Pi} (\lambda g_w)$	λB_p
1. Традиционная (отвальная вспашка K_{01} =13,65, ΔK_{1} =0,13)	2,20	1	1,0	1,0	1,0	1,0	1,0	1,0
2. Минимальная	2,70	1	1,00	1,00	1,00	1,90	0,526	1,55
(дискование K_{02} =6,50,		2	0,910	0,910	1,00	1,97	0,509	1,61
$\Delta K_2 = 0.09$)		3	1,00	0,910	1,10	2,16	0,510	1,76
3. <u>Нулевая</u>	3,30	1	1,00	1,00	1,00	2,95	0,339	1,95
(поверхностная обработка K_{03} =3,90,		2	0,823	0,823	1,00	3,19	0,313	2,11
$\Delta K_3 = 0.06$		3	1,00	0,823	1,22	3,89	0,314	2,57

Использование трактора с установленными эксплуатационными параметрами (1 вариант) на операциях второй и третьей групп обеспечивает повышение чистой производительности и снижение удельных затрат в основном за счет снижения удельного сопротивления рабочих машин при $(\lambda K_0 \cdot \lambda \mu_K)_{2/1} = 0,518~u~(\lambda K_0 \cdot \lambda \mu_K)_{3/1} = 0,322$. Недостатком является смещение тягового режима работы трактора в зону малых значений $\varphi_{\rm кр}i < \varphi_{\rm кр}h$ с пониженным тяговым КПД.

Регулирование удельной и соответственно эксплуатационной массы (2 вариант) позволяет достигнуть более высоких показателей эффективности использования трактора на операциях второй и третьей групп. По сравнению с

первым вариантом повышение производительности (увеличение ширины захвата B_p) и снижение удельных энергозатрат составило 3,68 и 8,13% соответственно. Трактор используется в диапазоне тяговых усилий, ограниченных минимальным δ_{\min} =0,07 и максимально-допустимым δ_{\min} = 0,15 буксованием [3].

Повышение мощности трактора из условия $\lambda Ne_{3} = 1/\lambda m_{vx}$ при $\lambda m_{\rm B} = 1.0$ обеспечивает (3 вариант) соответствующий рост производительности и ширины захвата агрегата при одинаковом со вторым вариантом снижении удельных затрат и тяговом диапазоне использования. Недостаток этого варианта заключается в существенном (до 22%) повышении эксплуатационной мощности двигателя за счет форсирования по подаче топлива и переводе трактора в другой мощностной разряд. Как и для первого варианта на 10-22%, по сравнению со вторым, увеличиваются затраты мощности на передвижение и повышается удельное давление трактора на почву.

По результатам выполненных исследований установлено, что эффективность энергонасыщенных колесных тракторов в ресурсосберегающих технологиях почвообработки достигается за счет дифференцирования эксплуатационной массы при использовании в качестве основного показателя технологичности удельной массы.

Литература

- 1. Селиванов, Н.И. Технологическая адаптация колесных тракторов / Н.И. Селиванов; Краснояр. гос. аграр. ун-т. Красноярск, 2017. 216 с.
- 2. Селиванов, Н.И. Эффективность технологических процессов основной обработки почвы / Н.И. Селиванов, В.Н. Запрудский// Вестник Крас Γ AУ. -2012.-№4 с. 179-185.
- 3. Селиванов, Н.И. Эффективность использования колесных тракторов в технологиях почвообработки /Н.И. Селиванов, Ю.Н. Макеева // Вестник КрасГАУ. -2015.-№6.-с. 49-57.