ОЧЕРЧИВАНИЕ ПРОСТРАНСТВА ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

Миндалев Игорь Викторович, доцент кафедры «Информационные технологии и математическое обеспечение информационных систем», ИЭиУ АПК

Красноярский государственный аграрный университет, Красноярск, Россия

e-mail: *mindalev@rambler.ru*

Титовский Сергей Николаевич, кандидат технических наук, доцент, доцент кафедры «Информационные технологии и математическое обеспечение информационных систем», ИЭиУ АПК

Красноярский государственный аграрный университет, Красноярск, Россия

e-mail: sntitovskysntitovsky@rambler.ru

Шевцова Любовь Николаевна, кандидат сельскохозяйственных наук, доцент, доцент кафедры «Информационные технологии и математическое обеспечение информационных систем», ИЭиУ АПК

Красноярский государственный аграрный университет, Красноярск, Россия

e-mail: shevtsovaln48@rambler.ru

Бронов Сергей Александрович, доктор технических наук, профессор, профессор кафедры «Информационные технологии и математическое обеспечение информационных систем», ИЭиУ АПК

Красноярский государственный аграрный университет, Красноярск, Россия

e-mail: sa_bronov@mail.ru

Аннотация. В статье представлен алгоритм изложения лекционного материала в образовательном процессе вуза на основе методологии mind map и сущностных понятий философии техники. Творческое и образное выражение ведущей идеи лекции рассматривается как ключевой принцип осмысления учебного материала.

Ключевые слова: лекция, конспект, радиальное мышление, ментальная карта, клиповое мышление, mind map, сущность техники.

DRAFTING THE INFORMATION TECHNOLOGY SPACE

Mindalev Igor Viktorovich, Associate Professor of the Department of "Information Technologies and Mathematical Support of Information Systems", Institute of Economics and Management in AIC

Krasnoyarsk state agrarian university, Krasnoyarsk, Russia

e-mail: mindalev@rambler.ru

Titovsky Sergei Nikolaevich, Candidate of Technical Sciences, Associate Professor, Associate Professor of the Department of "Information Technologies and Mathematical Support of Information Systems", Institute of Economics and Management in AIC

Krasnovarsk state agrarian university, Krasnovarsk, Russia

e-mail: sntitovskysntitovsky@rambler.ru

Shevtsova Lyubov Nikolaevna, Candidate of Agricultural Sciences, Associate Professor, Associate Professor of the Department of "Information Technologies and Mathematical Support of Information Systems", Institute of Economics and Management in AIC

Krasnoyarsk state agrarian university, Krasnoyarsk, Russia

e-mail: shevtsovaln48@rambler.ru

Bronov Sergey Alexandrovich, Doctor of Technical Sciences, professor, Professor of the Department of "Information Technologies and Mathematical Support of Information Systems", Institute of Economics and Management in AIC

Krasnoyarsk state agrarian university, Krasnoyarsk, Russia

e-mail: sa_bronov@mail.ru

Abstract. The article presents an algorithm for presenting lecture material in the educational process of a university using mind map. The creative and figurative expression of the leading idea of the lecture is considered as the key principle of understanding the educational material.

Keywords: lecture, synopsis, radial thinking, mind map, clip thinking, Florensky, essence of technology.

Настоящее время является эпохой техники, в том числе временем информационных технологий, которые используются в самых различных областях жизни. Рутинные технические задачи, как

правило, не продуцируют философские вопросы. Однако настоящая творческая работа почти всегда выходит на проблемы философии.

В чем сущность техники, в том числе информационных технологий? Бытийную основу техники одновременно открыли философы: священник отец Павел Флоренский (1882-1937) и Мартин Хайдеггер (1889-1976) [1].

О. Павел Флоренский считал, что инженер не создает новые технические изобретения, а лишь очерчивает уже существующее в мире искривление «технического пространства». Открывает то, что уже есть в реальности.

Тогда получается, что техника — это не просто инструменты, «придуманные» и созданные человеком для управления и оперирования миром, а его особый путь в бытии. «Техника, говорил о. Павел, — может и должна провоцировать биологию, как биология — технику. В себе и вообще в жизни открываем мы еще неосуществленную технику; в технике — еще не исследованные стороны жизни» [2, стр. 421].

Техника по своей сути соразмерна человеку. Так в истории архитектуры известны дорийская и ионическая колонны, которые имели мужские и женские пропорции соответственно. Колонны были были человекоразмерными копиями. Так и компьютерные технологии, являются в своей сущности человекоразмерными и должны быть такими и по форме.

Поэтому при обучении в вузе информационным технологиям необходимо ориентироваться на бытийную основу техники, на это очерчивание технического пространства.

Лекция в высшей школе является основной формой трансляции материала, с одной стороны, и важным связующим звеном между студентом и преподавателем, с другой. Используя лекционную форму занятий, преподаватель целенаправленно и систематизировано передает знания студентам. Во время конспектирования лекции студентами обеспечивается творческий процесс с преподавателем.

Возникает необходимость выбора преподавателем инструментов, позволяющих решать проблему систематизации знаний с учетом особенности человеческого мышления. В качестве такого решения можно предложить методику ментальных карт (mind map).

Pисунок I - Pучная mind map

Данный метод обработки информации основан на концепции радиального мышления. Этот тип мышления относится к естественным ассоциативным мыслительным процессам, соответственно, когда материал организован таким образом, его легче проанализировать и усвоить. [3] На рис.1 представлен пример карты по лекции «Информационные технологии».

Процесс создания начинается с выделения центральной концепции, из которой следуют последовательные ассоциации, образуя графический образ ветвящихся «образов». Процесс построения карты имитирует поведение нейронов в процессе мышления, когда активируются связи между ними.

В процессе построения карты происходит активация различных способностей мышления; при разветвлении ключевой концепции используются картинки и развивается ассоциативное мышление, выстраиваются иерархические структуры. В основе построения ментальных карт лежит пространственно-образное мышление, способствующее развитию мыслительных способностей обучающегося.

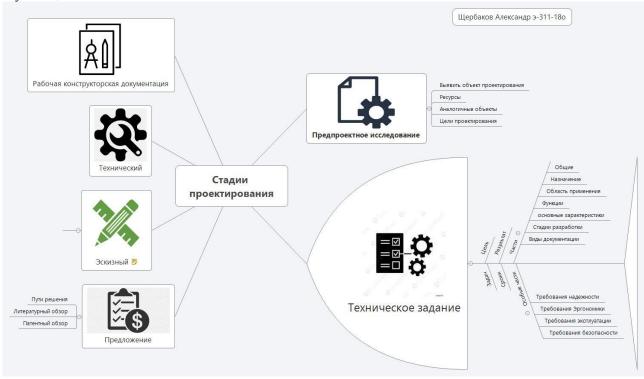


Рисунок 2 – Компьютерная mind тар

Основополагающая цель лекции — организация целенаправленной познавательной деятельности студентов по усвоению программного материала учебной дисциплины. В общем плане у лекции может быть несколько целей: познавательная, когнитивная и воспитательная. Познавательная цель предполагает изложение новой информации. Когнитивная цель направлена на развитие мыслительных способностей студента. Сюда включают развитие способностей внимания, памяти, мышления, связанные с учебной программой. Воспитательная цель предназначена для формирования оценочных суждений [4], [5]. Все эти цели достигаются с помощью mind map более творчески и эффективнее.

Еще одна важная цель использования mind map: это умение студента правильно вести конспект лекции. Умение систематизировать информацию, выделять ключевые моменты — важная составляющая обучения.

Карты на основе технологии mind map используются как инструменты конспектирования лекций по информационным технологиям на базе института агроэкологических технологий и института экономики и управления АПК Красноярского государственного аграрного университета. Лекционные занятия проводились в очной и дистанционной форме обучения. В первом случае занятия проходили в лекционном зале с использованием проектора, а также в аудиториях с компьютерами. В случае дистанционного обучения студенты получали доступ к подготовленной лектором презентации. В обоих случаях студенты с помощью цветных карандашей рисовали в тетради ментальные карты вручную (см. рисунок 1). Для создания цифровых карт (см. рисунок 2) использовалось соответствующее программное обеспечение. В конце лекции карта

фотографировалась с помощью смартфона или экспортировалась из цифровой карты в изображение и полученная картинка загружалась в систему управления обучением КрасГАУ (http://e.kgau.ru) для контроля и обратной связи [6], [7], [8].

Выполнение учебных заданий студентами при дистанционном обучении происходит преимущественно в свободное время. Поэтому временные рамки выполнения заданий по ментальным картам были отличные от академического занятия. И соответственно карты получались более яркие и подробные, чем выполненные во время лекций.

Очерчивание пространства информационных технологий с использование карт на основе технологии mind map позволяет превратить лекцию в интеллектуальное соработничество, где преподаватель получает новые формы контроля знаний, а студенты — сочетание умственной активности, запоминания и творчества и все это на основе философии техники.

Список литературы

- 1. Павленко А.Н. Возможность техники: взгляд из Лавры и голос из Марбурга // Историко-философский ежегодник-2002, М.: ИФ РАН. С. 386–408. Режим доступа: URL: https://iphras.ru/page49403450.htm
- 2. Сочинения в четырех томах / Священник Павел Флоренский; Составление и общая редакция игумена Андроника (А. С. Трубачева), П. В. Флоренского, М. С. Трубачевой. Москва: Издательство «Мысль», 1994—1999, Том 3 (1). 2000. 621, [1] с., ил. (Философское наследие, том 128). ISBN 5-244-00916-8. URL: http://tehne.com/library/florenskiy-p-sobranie-sochineniy-moskva-1994-2004
 - 3. Бьюзен, Т., Бьюзен, Б. Супермышление. Минск: ООО «Попурри», 2003, 272 с.
- 4. Шушунова Т.Н. Ментальные карты как альтернатива студенческому конспекту // Моделирование и конструирование в образовательной среде. сборник материалов IV Всероссийской (с международным участием) научно-практической, методологической конференции для научно-педагогического сообщества. Под редакцией И.А. Артемьева, В.О. Белевцовой, Н.Д. Дудиной, М.Н. Бученковой. 2019. С. 318-322.
- 5. Пушкарева Т.П., Калитина В.В., Брит А.А. Особенности обучения информатике в условиях цифровизации экономики и образования. Бизнес. Образование. Право. 2021. № 1 (54). С. 320-325.
- 6. Амбросенко Н.Д. Концепция формирования электронной информационной образовательной среды университета. // Проблемы современной аграрной науки. Материалы международной заочной научной конференции. 2017. С. 195-198.
- 7. Кузнецова А.С., Сафонов К.В. Об одной задаче комбинаторной оптимизации. Прикладная дискретная математика. Приложение. 2012. № 5. С. 15-16.
- 8. Болдарук И.И. Использование информационных технологий в системе высшего образования. // Наука и образование: опыт, проблемы, перспективы развития. Материалы международной научно-практической конференции. Красноярский государственный аграрный университет. 2017. С. 119-121.