Научная статья/Research Article

УДК 664.66:634.58

DOI: 10.36718/1819-4036-2024-5-223-229

Ольга Алексеевна Дубровина¹, Татьяна Владимировна Зубкова^{2™}

1,2Елецкий государственный университет им. И.А. Бунина, Елец, Липецкая область, Россия 1laboratoria101@mail.ru

²ZubkovaTanua@yandex.ru

ВЛИЯНИЕ АРАХИСОВОЙ МУКИ НА ПЕКАРНЫЕ СВОЙСТВА БИСКВИТА

Цель исследования – изучение влияния арахисовой муки на пекарные свойства бисквита. Задачи: изучить химический состав арахисовой муки; определить оптимальную дозировку арахисовой муки для приготовления бисквита; исследовать физико-химические и органолептические показатели качества полученного бисквита. Опыт представлен пятью вариантами. За контрольный вариант был принят бисквит, приготовленный по классической рецептуре: мука пшеничная – 100 г. яйцо куриное – 2 шт., сахар белый – 100 г. Замена пшеничной муки на арахисовую была представлена в вариантах 2-5 из расчета 25; 50; 75; 100 % соответственно. При выполнении работы ориентировались на СТБ 549-94. Для приготовления теста все ингредиенты (согласно вариантам) были взвешены с помощью электронных весов (1-го класса точности) GF-200 и взбиты в сбивальной машине. Полученное тесто помещали в силиконовые формы и выпекали в духовом шкафу ШХЛ-065 СПУ при температуре 190 °C в течение 20 мин. Исследованы химический состав пшеничной и арахисовой муки, влияние частичной замены пшеничной муки арахисовой мукой (25: 50: 75 и 100 %) на физико-химические параметры и органолептические свойства полученной продукции. Арахисовая мука имела значительное количество белка и низкое содержания углеводов в сравнении с мукой пшеничной. Вес бисквита, удельный объем и плотность мякиша значительно уменьшались с увеличением уровня арахисовой муки. В бисквите, обогащенном арахисовой мукой, увеличивается кислотность продукта. Результаты дегустационной оценки потребительских свойств полученного бисквита позволили установить приоритетность данного продукта на основе арахисово-пшеничной муки с содержанием арахисовой муки 50 %. Полученные данные позволяют сделать вывод о перспективности использования арахисовой муки при производстве бисквитных изделий в пропорции до 50 % от доли пшеничной муки, такое соотношение позволяет улучшить вкусовые свойства изделий, сбалансировать их по питательной и биологической ценности.

Ключевые слова: арахис, мука, бисквит, физико-химические свойства бисквита, органолептические свойства бисквита

Для цитирования: Дубровина О.А., Зубкова Т.В. Влияние арахисовой муки на пекарные свойства бисквита // Вестник КрасГАУ. 2024. № 5. С. 223–229. DOI: 10.36718/1819-4036-2024-5-223-229.

Olga Alekseevna Dubrovina¹, Tatyana Vladimirovna Zubkova^{2™}

^{1,2}Yelets State University named after I. A. Bunin, Yelets, Lipetsk Region, Russia ¹laboratoria101@mail.ru

²ZubkovaTanua@yandex.ru

PEANUT FLOUR INFLUENCE ON SPONGE CAKE BAKING PROPERTIES

The purpose of research is to study the effect of peanut flour on the baking properties of sponge cake. Objectives: to study the chemical composition of peanut flour; to determine the optimal dosage of peanut flour for making biscuits; to investigate the physicochemical and organoleptic quality indicators of the re-

© Дубровина О.А., Зубкова Т.В., 2024 Вестник КрасГАУ. 2024. № 5. С. 223–229.

Bulliten KrasSAU. 2024;(5):223-229.

sulting biscuit. The experience is presented in five options. The control variant was a biscuit prepared according to the classic recipe: wheat flour - 100 g, chicken egg - 2 pcs., white sugar - 100 g. Replacing wheat flour with peanut flour was presented in options 2-5 at a rate of 25; 50; 75; 100 % accordingly. When performing the work, we were guided by STB 549-94. To prepare the dough, all ingredients (according to the options) were weighed using electronic scales (1st accuracy class) GF-200 and whipped in a whipping machine. The resulting dough was placed in silicone molds and baked in a ShHL-065 SPU oven at a temperature of 190 °C for 20 minutes. The chemical composition of wheat and peanut flour, the effect of partial replacement of wheat flour with peanut flour (25, 50, 75 and 100 %) on the physicochemical parameters and organoleptic properties of the resulting products were studied. Peanut flour had a significant amount of protein and low carbohydrate content compared to wheat flour. Sponge cake weight, specific volume and crumb density decreased significantly with increasing peanut flour level. In a biscuit enriched with peanut flour, the acidity of the product increases. The results of a tasting assessment of the consumer properties of the resulting sponge cake made it possible to establish the priority of this product based on peanut-wheat flour with a peanut flour content of 50 %. The data obtained allow us to conclude that it is promising to use peanut flour in the production of sponge cake products in a proportion of up to 50 % of the share of wheat flour; this ratio allows improving the taste properties of the products, balancing them in terms of nutritional and biological value.

Keywords: peanuts, flour, sponge cake, physico-chemical properties of the sponge cake, organoleptic properties of the sponge cake

For citation: Dubrovina O.A., Zubkova T.V. Peanut flour influence on sponge cake baking properties // Bulliten KrasSAU. 2024;(5): 223–229 (In Russ.). DOI: 10.36718/1819-4036-2024-5-223-229.

Введение. По оценке Ассоциации предприятий кондитерской промышленности (АСКОНД) по итогам 2023 г. объем производства кондипродукции России терской В превысил 4,115 млн т, большую долю в которой занимают мучные изделия. Это не только вторая по объему продаж индустрия на продовольственном рынке, но и самая быстрорастущая FMCGгруппа [1]. Чтобы соответствовать современным условиям жизни, производители вводят не только новые линейки кондитерских изделий с инновационными вкусами, но и изделия, обогащенные натуральными ингредиентами и различными полезными веществами, которые по-прежнему высоко востребованы.

Бисквит — популярное мучное кондитерское изделие, из которого готовят торты, пироги, кексы, рулеты и т. д. Бисквит отличается нежной воздушной структурой, поэтому десерты из него получаются изысканными. Известны пять основных видов бисквита: классический сухой бисквит, шифоновый бисквит, бисквит Женуаз, бисквит Джоконда, бисквит Дакуаз [2]. Основные ингредиенты, используемые в производстве бисквитов: яйца, мука и сахар, сливочное или растительное масло. С развитием здорового образа жизни важным направлением совершенствования технологии функциональных кондитерских изделий является повышение их биологической ценности путем замены энергоемких нутриентов

или добавления белка растительного происхождения [3].

Широко распространенной в мире высокобелковой культурой, применяемой в производстве мучных кондитерских изделий, является арахис. Семена арахиса содержат от 44 до 56 % масла, 22-30 % белка, являются богатым источником минеральных веществ (фосфор, кальций, магний и калий) и витаминов (Е, К, В) [4]. Арахисовое масло состоит из ненасыщенных жирных кислот, из которых 45 % представлено олеиновой, 35 % линолевой кислотами и аргинином. Поэтому подходящим сочетанием с арахисовой мукой являются злаки, которые богаты S-содержащими аминокислотами (метионин, цистин и цистеин), обеспечивающие сбалансированный состав продукции незаменимыми аминокислотами [5-7].

Прекрасные вкусовые качества бобов позволяют использовать их в жареном виде, получать арахисовое масло, крупу и муку, белковые концентраты и белковые изоляты. Их применяют для обогащения хлеба и хлебобулочных изделий, снеков, мясных и молочных продуктов [8]. Несмотря на многочисленные исследования, все еще существует необходимость в разработке новых рецептур с включением семян культуры.

Цель исследования — изучение влияния арахисовой муки на пекарные свойства бисквита.

Задачи: изучить химический состав арахисовой муки; определить оптимальный процент замены пшеничной муки на арахисовую для приготовления бисквита; исследовать физикохимические и органолептические показатели качества бисквита.

Объекты и методы. Для выпечки бисквита использовалась мука пшеничная высшего сорта торговой марки «Макфа» и мука из семян арахиса. При использовании экспортного арахиса часто возникает проблема, связанная с присутствием в сырье афлатоксинов, для снятия этого вопроса арахис выращивался на опытном участке ЕГУ им. И.А. Бунина в 2023 г. Для получения муки выращенные бобы были очищены, отсортированы и измельчены с помощью мельницы марки ЛЗМ-1 и просеяны через сито СПЛД с размером ячеек 2 мм.

Опыт представлен пятью вариантами. За контрольный вариант был принят бисквит, приготовленный по классической рецептуре: мука пшеничная — 100 г, яйцо куриное — 2 шт., сахар белый — 100 г. Замена пшеничной муки на арахисовую была представлена в вариантах 2—5 из расчета 25; 50; 75; 100 % соответственно (табл. 2). При выполнении работы ориентировались на СТБ 549-94. Для приготовления теста все ингредиенты (согласно вариантам) были взвешены с помощью электронных весов (1-го класса точности) GF-200 и взбиты в сбивальной машине.

Полученное тесто помещали в силиконовые формы и выпекали в духовом шкафу ШХЛ-065 СПУ при температуре190 °C в течение 20 мин,

затем изделия вынимались из форм и оставлялись на 1 ч при комнатной температуре для остывания и последующих органолептического и физико-химического анализов.

Химический состав образцов определялся стандартными методами в соответствии с требованиями ГОСТ. Оценку органолептических свойств полученной продукции учитывали с помощью ГОСТ5897-90 [18]. Функциональные свойства исследовались по ГОСТ5669-96 и методами, описанными О.Д. Скуратовской [5].

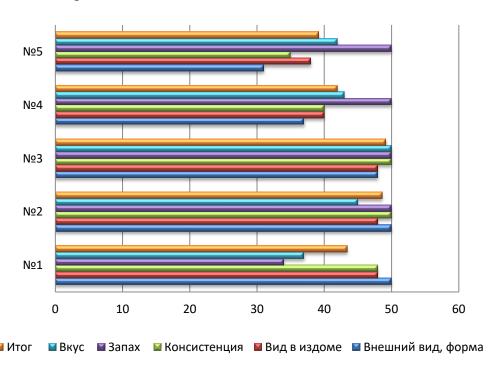
Результаты и их обсуждение. Перед выпечкой бисквита был проведен химический анализ муки на соответствие ее качества. В таблице 1 показаны результаты состава муки пшеничной (Triticum spp.) и арахисовой (Arachis *hypogea*). Этот результат оказался ожидаемым, поскольку в арахисовой муке наблюдалось значительное увеличение содержания белка, золы, жира. Влажность муки была приблизительно равна 12,66-12,80 %. Содержание углеводов в образце пшеничной муки было в 2 раза больше, чем в образце муки из арахиса. Содержание кальция в арахисовой муке было несколько ниже, чем в пшеничной, при этом значительно увеличилось количество микроэлементов, в т. ч. марганца – на 37,5 %; цинка – на 47,4; железа – 22,4 %. Приведенные исследования отражают ценность арахисовой муки [10, 11].

Выпеченный бисквит должен быть пышным, легким, с приятным вкусом [10]. За основу брался базовый рецепт с последующей модификацией (табл. 2).

Химический состав муки, мг%/100 г с. в.

Таблица 1

Вид муки	Вода	Белки	Жиры	Углеводы	Зола	Минеральные вещества			
						Ca	Mn	Fe	Zn
Пшеничная	12,66	11,20	1,35	54,37	0,45	17,88	0,57	1,22	0,73
Арахисовая	12,80	32,60	4,83	26,70	4,8	14,2	1,52	5,45	1,54


Таблица 2 Расход сырья при приготовлении бисквита, г

Мигропионт	Вариант замены арахисовой муки, %						
Ингредиент	1 (0 %)	2 (25 %)	3 (50 %)	4 (75 %)	5 (100 %)		
Яйцо куриное, шт.	2						
Сахар белый	100						
Мука пшеничная	100	75	50	25	0		
Мука арахисовая	0	25	50	75	100		
Итого вес муки			100				

При дегустации приготовленный бисквит оценивали по установленным характеристикам: запах, вкус, внешний вид, консистенция и общая приемлемость. Все подготовленные образцы были представлены экспертам для оценки образца бисквита с использованием гедонистической шкалы, по которой высший балл — 50, отлично — 50–41, хорошо — 40–31, удовлетворительно — 30–20, неудовлетворительно < 20. Результаты, касающиеся сенсорных характеристик, представлены на рисунке.

Оценка аромата образцов бисквита варьировалась от 34 до 50 баллов, максимальный балл был получен в вариантах 2–5, а минимальный балл был у бисквита, приготовленного по классической рецептуре. Значительная разница среди образцов между вариантами 1 и 2–5 указывает на то, что частичная замена пшеничной муки на арахисовую значительно улучшила аромат.

Органолептическая оченка качества биквита

Органолептическая оценка качества бисквита

В результате исследования внешнего вида было замечено, что частичная замена пшеничной муки на арахисовую муку 75 и 100 % сильно изменили внешний вид продукции, цвет бисквита был темно-коричневый, форма неровная, высота изделий значительно ниже предыдущих вариантов, итог — наименьшее среднее значение — 37 и 31 балл. Образцы 1 и 2 имели наиболее приемлемый внешний вид, без повреждений, боковые поверхности гладкие, средняя оценка — 50 баллов, 48 баллов получил вариант 3.

Замена пшеничной муки на арахисовую оказывает существенное влияние на вид изделия в разрезе. В вариантах 4 и 5 текстура изделия крошащаяся, недостаточно пропеченная, неравномерного цвета. Варианты 1–3 с развитой пористостью, хорошо пропеченные, цвет в разрезе бисквита – свойственный данному виду изделия.

Консистенция показывает реакцию органов чувств во рту на шероховатость, гладкость, жевательную способность, липкость пищи во рту. Результат оказался ожидаемым, поскольку в образцах 2 и 3 более полно ощущалась полнота вкуса и гладкая текстура продуктов. Бисквит в варианте 6 дегустаторы оценили в 35 баллов, вариант 4 и контроль получили оценку 40 баллов.

При оценке вкуса среди представленных образцов бисквита результаты показали, что уве-

личение в рецептуре арахисовой муки улучшало вкус изделия. Образец 3 имел наибольшее потребительское предпочтение (50 баллов), с разницей в 5 баллов внимания был удостоен вариант 2; 43 и 42 балла получили варианты 5 и 6, минимальный балл (37) был у бисквита, приготовленного по классической рецептуре.

На основании заключения экспертов бисквит, приготовленный с 50 % заменой арахисовой муки, обладал наибольшими потребительскими

предпочтениями по всем аспектам сенсорных характеристик с баллом 49,2, тогда как вариант 5 имел наименьший балл – 39,2.

Данные таблицы 3 показывают, что в бисквите, обогащенном арахисовой мукой, увеличивается кислотность продукта. Учитывая, что органические кислоты активизируют деятельность ферментов, участвуют в поддержании ионного равновесия в организме, данные об их содержании являются очень важными.

Таблица 3

Физико-химические показатели качества бисквита

Вариант	Пористость, %	Кислотность, град.	Сжимаемость мякиша, ΔНобщ, ед. прибора	Масса, г	Высота, мм
1	82,42	0,6	37	29,8	54,2
2	77,58	1,2	33	31,8	53,5
3	70,49	1,4	30	32,5	50,1
4	64,38	2,0	32	32,9	44,6
5	53,59	2,4	30	33,1	41,2
HCP ₀₅	11,21	0,5	2,1	1,02	3,6

Анализ результатов оценки физико-химических показателей качества бисквита показал, что увеличение замены пшеничной муки арахисовой мукой приводит к снижению пористости изделия, увеличению его массы и снижению высоты бисквита, что говорит о выделении большого количества арахисового масла в процессе выпечки. Выявлена зависимость между заменой пшеничной муки арахисовой мукой и периодом выпекания изделия, в частности контроль выпекался 22 мин при температуре 190 °C, тогда как время приготовления варианта со 100 % арахисовой мукой сократилось до 16 мин.

Заключение. Полученные данные позволяют сделать вывод о перспективности использования арахисовой муки при производстве бисквитных изделий в пропорции до 50 % замены пшеничной муки, такое соотношение позволяет улучшить вкусовые свойства изделий, сбалансировать их по питательной и биологической ценности.

Список источников

- Вершинина О.Л., Михайлов В.А., Лобанова А.В. Использование арахисовой массы при производстве хлебобулочных изделий повышенной пищевой ценности // Техника и технология пищевых производств. 2009. № 3 (14). С. 23–26.
- 2. Канда Л.О., Змейкина М.Ю. Оценка развития растений арахиса в условиях ЦЧР // Экологическое состояние природной среды и научно-практические аспекты современных агротехнологий, Рязань, 6 апреля 2023 г. / Рязан. гос. агротехнол. ун-т им. П.А. Костычева. Рязань, 2023. С. 117–119.
- 3. *Пашук З.Н., Апет Т.К., Дубинина С.В.* Торты и пирожные: справ. пособие. Минск: Высш. шк., 1991. 346 с.
- 4. Святкина Л.И., Андрухова В.Я. Современные технологии в формировании качества и потребительских свойств мучных кондитерских изделий // Товаровед продовольственных товаров. 2022. № 7. С. 474–480.

- Скуратовская О.Д. Контроль качества продукции физико-химическими методами.
 Мучные кондитерские изделия. 2-е изд., перераб. и доп. М.: ДеЛи принт, 2003 128 с.
- 6. Химический состав российских пищевых продуктов: справочник / под ред. *И.М. Скурихина*, *В.А. Тутельяна*. М.: ДеЛипринт, 2002. 236 с.
- 7. Use of partially defatted peanut flour in breakfast cereal flakes / P. Cheewapramong [et al.] // Cereal chemistry. 2002. T. 79, № 4. C. 586–592.
- 8. The preparation and quality evaluation of biscuit using composite flour by mixing wheat flour, chickpea flour, and Peanut flour / S. Dahal [et al.] // International Journal on Food, Agriculture and Natural Resources. 2022. T. 3, № 1. C. 14–19.
- Yu J., Ahmedna M., Goktepe I. Peanut protein concentrate: Production and functional properties as affected by processing // Food chemistry. 2007. T. 103, № 1. C. 121–129.
- 10. Vinogradov D.V., Zubkova T.V. Accumulation of heavy metals by soil and agricultural plants in the zone of technogenic impact // Indian Journal of Agricultural Research. 2022. T. 56, № 2. C. 201–207.
- Vinogradov D.V., Zubkova T.V. Ways to increase the productivity of crop rotation in the forest-steppe conditions of the European part of Russia // Improving Energy Efficiency, Environmental Safety and Sustainable Development in Agriculture. International Scientific and Practical Conference. London, 2022. C. 012060.

References

- Vershinina O.L., Mihajlov V.A., Lobanova A.V. Ispol'zovanie arahisovoj massy pri proizvodstve hlebobulochnyh izdelij povyshennoj pischevoj cennosti // Tehnika i tehnologiya pischevyh proizvodstv. 2009. № 3 (14). S. 23–26.
- Kanda L.O., Zmejkina M.Yu. Ocenka razvitiya rastenij arahisa v usloviyah CChR // `Ekologicheskoe sostoyanie prirodnoj sredy i

- nauchno-prakticheskie aspekty sovremennyh agrotehnologij, Ryazan', 6 aprelya 2023 g. / Ryazan. gos. agrotehnol. un-t im. P.A. Kostycheva. Ryazan', 2023. S. 117–119.
- 3. Pashuk Z.N., Apet T.K., Dubinina S.V. Torty i pirozhnye: sprav. posobie. Minsk: Vyssh. shk., 1991. 346 s.
- Svyatkina L.I., Andruhova V.Ya. Sovremennye tehnologii v formirovanii kachestva i potrebitel'skih svojstv muchnyh konditerskih izdelij // Tovaroved prodovol'stvennyh tovarov. 2022. № 7. S. 474–480.
- Skuratovskaya O.D. Kontrol' kachestva produkcii fiziko-himicheskimi metodami. 2. Muchnye konditerskie izdeliya. 2-e izd., pererab. i dop. M.: DeLi print, 2003 128 s.
- 6. Himicheskij sostav rossijskih pischevyh produktov: spravochnik / pod red. *I.M. Skurihina, V.A. Tutel'yana*. M.: DeLiprint, 2002. 236 s.
- 7. Use of partially defatted peanut flour in breakfast cereal flakes / P. Cheewapramong [et al.] // Cereal chemistry. 2002. T. 79, № 4. S. 586–592.
- 8. The preparation and quality evaluation of biscuit using composite flour by mixing wheat flour, chickpea flour, and Peanut flour / S. Dahal [et al.] // International Journal on Food, Agriculture and Natural Resources. 2022. T. 3, № 1. S. 14–19.
- 9. Yu J., Ahmedna M., Goktepe I. Peanut protein concentrate: Production and functional properties as affected by processing // Food chemistry. 2007. T. 103, № 1. S. 121–129.
- 10. Vinogradov D.V., Zubkova T.V. Accumulation of heavy metals by soil and agricultural plants in the zone of technogenic impact // Indian Journal of Agricultural Research. 2022. T. 56, № 2. S. 201–207.
- Vinogradov D.V., Zubkova T.V. Ways to increase the productivity of crop rotation in the forest-steppe conditions of the European part of Russia // Improving Energy Efficiency, Environmental Safety and Sustainable Development in Agriculture. International Scientific and Practical Conference. London, 2022. S. 012060.

Статья принята к публикации 15.04.2024 / The article accepted for publication 15.04.2024.

Информация об авторах:

Ольга Алексеевна Дубровина¹, заведующая научно-исследовательской агрохимической лабораторией, доцент кафедры агротехнологий, хранения и переработки сельскохозяйственной продукции, кандидат биологических наук

Татьяна Владимировна Зубкова², заведующий кафедрой агротехнологий, хранения и переработки сельскохозяйственной продукции, кандидат сельскохозяйственных наук, доцент

Information about the authors:

Olga Alekseevna Dubrovina¹, Head of the Research Agrochemical Laboratory, Associate Professor of the Department of Agricultural Technologies, Storage and Processing of Agricultural Products, Candidate of Biological Sciences

Tatyana Vladimirovna Zubkova², Head of the Department of Agricultural Technologies, Storage and Processing of Agricultural Products, Candidate of Agricultural Sciences, Docent