Научная статья/Research Article

УДК 632.9

DOI: 10.36718/1819-4036-2024-6-62-68

Елена Петровна Пучкова^{1™}, Анастасия Вячеславовна Алексеева²

1.2Красноярский государственный аграрный университет, Красноярск, Россия

¹puchkova_el@mail.ru

²nastenka-alekseeva-2019@mail.ru

ПОЧВЕННЫЕ БАКТЕРИИ ИЗ АВТОХТОННЫХ МИКРОБНЫХ СООБЩЕСТВ ЦЕНТРАЛЬНОЙ СИБИРИ В БИОЛОГИЧЕСКОЙ ЗАЩИТЕ ПШЕНИЦЫ ОТ ALTERNARIA TENUISSIMA

Произведен отбор наиболее сильных почвенных бактерий из автохтонных микробных сообществ Центральной Сибири против фитопатогенных грибов Alternaria tenuissima. Выделение из почвенных образцов и культивирование изолятов бактерий производили на искусственной питательной среде для бактерий «ПД-агар». Антагонистическую активность измеряли на «ГРМ Сабуро». При этом на «ГРМ Сабуро» в чашке осуществлялся высев Alternaria tenuissima, вокруг микромицета высевали отобранные штаммы бактерий. В результате совместного роста тест-культуры и почвенных бактерий выявляли наиболее сильных антагонистов по зоне подавления Alternaria tenuissima. Выявление наиболее сильных бактерий-антагонистов в уменьшении интенсивности и распространенности корневой гнили проводили методом искусственного инфицирования Alternaria tenuissima. Предварительно перед инфицированием микромицетом проводили бактеризацию исследуемыми изолятами бактерий семян яровой пшеницы Новосибирская-15. Математическую обработку полученных результатов осуществляли однофакторным дисперсионным анализом и двухвыборочным F-тестом для дисперсии. Результаты исследования по применению почвенных автохтонных микроорганизмов-антагонистов в биологической защите яровой пшеницы от возбудителей корневой гнили Alternaria tenuissima показали, что исследуемые изоляты бактерий статистически достоверно (р < 0,01) снижали интенсивность и распространенность данного заболевания. Максимальный эффект в снижении интенсивности и распространенности болезни оказали изоляты В2 и В4 (по предварительной идентификации Bacillus sp.). Также изучаемые штаммы бактерий проявили положительное влияние на длину проростков. При этом изолят В2 проявил статистически значимое (р < 0,001) воздействие на длину проростков яровой пшеницы. Эффект стимулирования проявился в увеличении длины проростков по сравнению с контролем. Поэтому данный штамм можно рекомендовать не только для защиты от Alternaria tenuissima, но и для стимулирования роста пшеницы.

Ключевые слова: фитопатогенные грибы, биологическая защита, пшеница, Alternaria, альтернариоз, микроорганизмы-антагонисты, антагонизм

Для цитирования: Пучкова Е.П., Алексеева А.В. Почвенные бактерии из автохтонных микробных сообществ Центральной Сибири в биологической защите пшеницы от *Alternaria tenuissima* // Вестник КрасГАУ. 2024. № 6. С. 62–68. DOI: 10.36718/1819-4036-2024-6-62-68.

Elena Petrovna Puchkova^{1™}, Anastasia Vyacheslavovna Alekseeva²

1,2Krasnoyarsk State Agrarian University, Krasnoyarsk, Russia

¹puchkova_el@mail.ru

²nastenka-alekseeva-2019@mail.ru

© Пучкова Е.П., Алексеева А.В., 2024 Вестник КрасГАУ. 2024. № 6. С.62–68. Bulliten KrasSAU. 2024;(6):62–68.

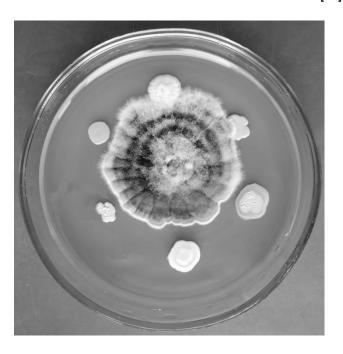
SOIL BACTERIA FROM AUTOCHTHONIC MICROBIAL COMMUNITIES OF CENTRAL SIBERIA IN BIOLOGICAL PROTECTION OF WHEAT FROM *ALTERNARIA TENUISSIMA*

The most powerful soil bacteria from autochthonous microbial communities of Central Siberia against phytopathogenic fungi Alternaria tenuissima were selected. Isolation from soil samples and cultivation of bacterial isolates were performed on the artificial nutrient medium for bacteria PD-agar. Antagonistic activity was measured on GRM Saburo. In this case, Alternaria tenuissima was sown in a dish on GRM Saburo, and the selected bacterial strains were sown around the micromycete. As a result of joint growth of the test culture and soil bacteria, the most powerful antagonists in the suppression zone of Alternaria tenuissima were identified. The most powerful bacteria-antagonists in reducing the intensity and prevalence of root rot were identified by the method of artificial infection of Alternaria tenuissima. Before infection with micromycete, bacterization of spring wheat seeds Novosibirskaya-15 with the studied bacterial isolates was carried out. Mathematical processing of the obtained results was fulfilled by one-way variance analysis and two-sample F-test for variance. The results of the study on the use of soil autochthonous antagonist microorganisms in biological protection of spring wheat from the causative agents of root rot Alternaria tenuissima showed that the studied bacterial isolates statistically significantly (p < 0.01) reduced the intensity and prevalence of this disease. The maximum effect in reducing the intensity and prevalence of the disease was shown by isolates B2 and B4 (according to preliminary identification of Bacillus sp.). Also, the studied bacterial strains showed a positive effect on the length of sprouts. At the same time, isolate B2 showed a statistically significant (p < 0.001) effect on the length of spring wheat sprouts. The stimulating effect was manifested in an increase in the length of sprouts compared to the control. Therefore, this strain can be recommended not only for protection against Alternaria tenuissima, but also for stimulating wheat growth.

Keywords: phytopathogenic fungi, biological protection, wheat, Alternaria, alternariosis, antagonist microorganisms, antagonism

For citation: Puchkova E.P., Alekseeva A.V. Soil bacteria from autochthonic microbial communities of Central Siberia in biological protection of wheat from *Alternaria tenuissima* // Bulliten KrasSAU. 2024;(6): 62–68 (In Russ.). DOI: 10.36718/1819-4036-2024-6-62-68.

Введение. Сибирский федеральный округ представляет собой регион России, который является одним из лидеров по производству зерновых культур. Основной из зерновых культур, возделываемой в этом регионе, является яровая пшеница. Проведенные исследования по распространенности фитопатогенных грибов на яровой пшенице в Сибирском регионе показали преобладание грибов рода Alternaria в микобиоте зерна [1-3]. Фитопатогенные грибы Alternaria sp. наиболее часто на зерновых культурах представлены видами Alternaria tenuissima, Alternaria infectoria и другими более редкими видами. Зараженность от Alternaria sp. находится в пределах около 30-50 %, но иногда может достигать 90 % [4]. Вредоносность от фитопатогенных грибов Alternaria sp. проявляется в уменьшении урожая, плесневении семян, а также в засорении сельскохозпродукции токсинами гриба [5-7]. Грибы Alternaria sp. очень часто встречаются в семенах растений, нанося существенный урон, проявляющийся в щуплости и невысокой жизнеспособности семян [8].


Одним из экологичных безвредных современных методов в борьбе с болезнями растений для получения экологически чистой сельхозпродукции, а также фитосанитарной оптимизации агроэкосистем является использование биологических средств защиты растений. Массовое повсеместное применение химических пестицидов может приводить к нарушению биологического равновесия, гибели полезных микроорганизмов, появлению фитопатогеннов, резистентных к тем или иным препаратам. Использование биопрепаратов - это многосторонний подход в современном растениеводстве, который может способствовать снижению объемов применения химических средств защиты растений [9, 10]. Тем не менее не все биопрепараты могут быть действенными в том или ином регионе из-за отсутствия конкурентоспособности антагонистических микроорганизмов в новых для них условиях [11–13]. Поэтому поиск новых микроорганизмов-антагонистов, приспособленных к определенным почвенно-климатическим условиям, будет оставаться актуальным.

Цель исследования — поиск сильнейших почвенных микроорганизмов из автохтонных микробных сообществ Центральной Сибири против фитопатогенных микромицетов *Alternaria* tenuissima.

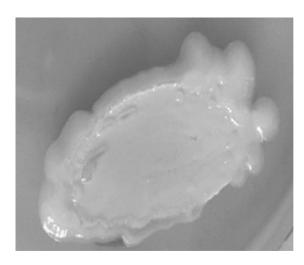
Объекты и методы. Объект исследования – почвенные автохтонные бактерии, выделенные из почв Красноярской лесостепи в Сухобузимском районе. Почвенные образцы отобраны изпод яровой пшеницы Новосибирская 15 и из-под многолетних трав. Почвенный покров представлен черноземом выщелоченным с обыкновенным. Использовалась аммиачная селитра (34,7 кг/га д.в.). Климатические условия умеренно сухие и континентальные. Исследования проведены в 2022–2023 гг.

Тест-объектом служили фитопатогенные грибы *Alternaria tenuissima*, выделенные из пораженных органов яровой пшеницы методом влажных камер, с дальнейшим посевом на питательную среду.

Выделение из почвенных образцов и культивирование изолятов бактерий производили на искусственной питательной среде для бактерий «ПД-агар». Антагонистическую активность измеряли на питательной среде «ГРМ Сабуро». При этом на «ГРМ Сабуро» в чашке осуществляли высев Alternaria tenuissima, вокруг микромицета высевали отобранные штаммы бактерий. В результате совместного роста тесткультуры и почвенных бактерий выявляли наиболее сильных антагонистов по зоне подавления Alternaria tenuissima [14] (рис. 1).

Puc. 1. Антагонистическая активность выделенных почвенных автохтонных бактерий к Alternaria tenuissima

Наиболее сильных штаммов-антагонистов в снижении интенсивности и распространенности корневой гнили на яровой пшенице Новосибирская 15 учитывали методом искусственного заражения семян Alternaria tenuissima. При этом семена перед искусственным заражением Alternaria tenuissima подвергали бактеризации исследуемыми штаммами бактерий. Схема эксперимента включала следующие варианты: контроль (семена яровой пшеницы без обработки штаммами бактерий с искусственным заражением Alternaria tenuissima); бактеризация семян яровой пшеницы штаммом В1 с искусственным

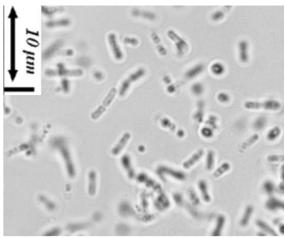
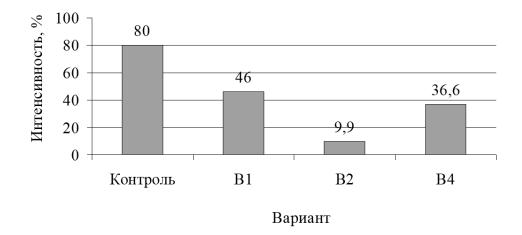

заражением Alternaria tenuissima; бактеризация семян яровой пшеницы штаммом B2 с искусственным заражением Alternaria tenuissima; бактеризация семян яровой пшеницы штаммом B4 с искусственным заражением Alternaria tenuissima. Титр бактерий-антагонистов в культуральном фильтрате был 10⁹. Интенсивность и распространенность болезни проводили согласно ГОСТ 12044-93 [15]. Помимо этого, учитывали морфометрические параметры проростков пшеницы.

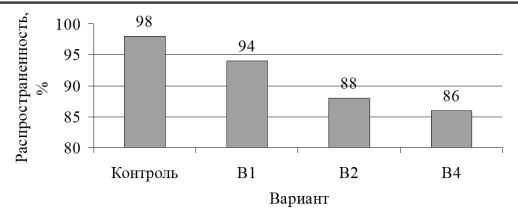
Математический анализ полученных результатов исследования производили однофактор-

ным дисперсионным анализом и двухвыборочным F-тестом для дисперсии [16, 17].

Результаты и их обсуждение. Бактерии, которые проявили антагонизм к *Alternaria tenuissima*, были найдены во всех почвенных образцах. Все исследуемые штаммы бактерий статистически значимо (р < 0,01) снижали интенсив-

ность и распространенность корневой гнили, вызванной *Alternaria tenuissima* на проростках яровой пшеницы. Самыми эффективными в уменьшении интенсивности болезни проявили себя штаммы B2 и B4 (по предварительной идентификации *Bacillus* sp.) (рис. 2).


Рис. 2. Макроколония и морфология штамма В2

Так, обработка семян яровой пшеницы Новосибирская 15 штаммом В2 привела к уменьшению интенсивности заболевания в сравнении с контролем на 70,1 %. Обработка семян штаммом В4 вызвала снижение интенсивности корневой гнили в сравнении с контролем на 43,4 %. Обработка семян штаммом В1 вызвала снижение интенсивности болезни в сравнении с контролем на 34 %. Наряду с этим все исследуемые штаммы проявили статистически значимое снижение распространенности корневой гнили. Больше всего оказали эффективное снижение

распространенности болезни штаммы В2 и В4. Так, бактеризация семян яровой пшеницы штаммом В4 привела к уменьшению распространенности корневой гнили на 86 %, что в 1,13 раза меньше по сравнению с контролем. Обработка семян яровой пшеницы штаммом В2 привела к уменьшению распространенности болезни до 88 %, что в 1,11 раза меньше по сравнению с контролем. Бактеризация семян яровой пшеницы В1 привела к снижению распространенности до 94 %, что в 1,04 раза меньше по сравнению с контролем (рис. 3, 4).

Puc. 3. Интенсивность болезни у проростков яровой пшеницы с искусственным заражением семян Alternaria tenuissima, прежде бактеризованных исследуемыми штаммами

Puc. 4. Распространенность болезни у проростков яровой пшеницы с искусственным заражением семян Alternaria tenuissima, прежде бактеризованных исследуемыми штаммами

Исследование выделенных штаммов показало, что изолят В2 проявил статистически значимое (р < 0,001) воздействие на длину проростков яровой пшеницы. Эффект стимулирования проявился в увеличении длины проростков по сравнению с контролем на 0,4 см (рис. 5).

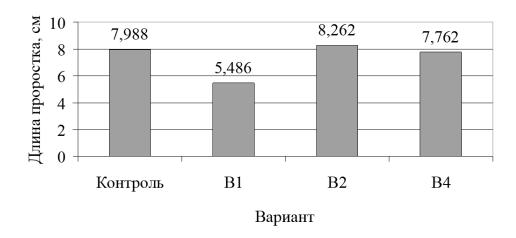


Рис. 5. Действие бактеризации семян яровой пшеницы исследуемыми штаммами на длину проростка

Заключение. Исследование эффективности почвенных бактерий-антагонистов в биологической защите яровой пшеницы от Alternaria tenuissima доказало, что выделенные штаммы бактерий статистически значимо (р < 0,01) оказали влияние на интенсивность и распространенность заболевания яровой пшеницы. Самыми эффективными в снижении интенсивности заболевания оказались штаммы В2 и В4. Также значительный эффект в уменьшении распространенности заболевания оказали штаммы В2 и В4. При этом штамм В2 проявил статистически значимое воздействие (р < 0,001) на длину проростков яровой пшеницы. Поэтому данный штамм можно рекомендовать не только для защиты от Alternaria tenuissima, но и для стимулирования роста пшеницы.

Список источников

- Альтернариоз зерна яровой пшеницы и ячменя в Западной Сибири и Восточном Зауралье / Е.Ю. Торопова [и др.] // Защита и карантин растений. 2015. № 1. С. 20–22.
- 2. Влияние элементов технологии возделывания на фитосанитарное состояние посевов и урожайность зерновых культур / В.А. Полосина [и др.] // Вестник НГАУ. 2022. № 2. С. 51–58.
- Ivchenko V.K., Polosina V.A., Puchkova E.P. Influence of different soil tillage methods on the development of root rot in spring wheat // IOP Conf. Series: Earth and Environmental Science. 2020. Volume 548. P. 052073. DOI: 10.1088/1755-1315/548/5/052073.

- Ганнибал Ф.Б. Альтернариоз зерна современный взгляд на проблему // Защита и карантин растений. 2014. № 6. С. 11–15.
- Контаминация зерна в Западной Сибири грибами Alternaria и их микотоксинами / A.C. Орина [и др.] // Вестник защиты растений. 2021. № 104. С. 153–162.
- 6. Кононенко Г.П., Пирязева Е.А., Буркин А.А. Продуцирование альтернариола у популяций мелкоспоровых видов Alternaria, ассоциированных с зерновыми кормами // Сельскохозяйственная биология. 2020. Т. 55, № 3. С. 628–637.
- 7. Анализ продовольственного зерна в Российской Федерации на загрязненность широким спектром микотоксинов / М.Г. Киселева [и др.] // Сельскохозяйственная биология. 2021. Т. 56, № 3. С. 559–577.
- Ганнибал Ф.Б. Мониторинг альтернариозов сельскохозяйственных культур и идентификация грибов рода *Alternaria*. СПб.: ВИЗР Россельхозакадемии, 2011. 71 с.
- 9. Микробные препараты и регулятор роста как средства биологизации земледелия / *B.A. Семыкин* [и др.] // Russian Journal of Agricultural and Socio-Economic Sciences. 2016. № 11 (59). С. 3–9.
- Монастырский О.А. Состояние и перспективы развития биологической защиты растений в России // Защита и карантин растений. 2008. № 12. С. 41–44.
- 11. Новикова И.И. Полифункциональные биопрепараты для фитосанитарной оптимизации агроэкосистем в биологическом земледелии // Технологии и технические средства механизированного производства продукции растениеводства и животноводства. 2019. № 2 (99). С. 183–194.
- 12. Ланкина Е.П., Петрушкина С.А., Хижняк С.В. Влияние психротолерантных штаммов бактерий-антагонистов UOZK2 и UOZK7 на структуру бактериального сообщества в ризосфере яровой пшеницы // Вестник Крас-ГАУ. 2014. № 8 (95). С. 84–87.
- 13. *Муродова С.С., Давранов К.Д.* Комплексные микробные препараты. Применение в сельскохозяйственной практике // Biotechnologia Acta. V. 2014. V. 7, № 6. С. 92–101.
- 14. Пучкова Е.П., Хижняк С.В., Ивченко В.К. Биотехнология в защите растений / Краснояр. гос. аграр. ун-т. Красноярск, 2021. 144 с.

- 15. ГОСТ 12044-93. Межгосударственный стандарт. Семена сельскохозяйственных культур. Методы определения зараженности болезнями. М., 1993. URL: https://standartgost.ru (дата обращения: 03.09.2023).
- 16. Поллард Дж. Справочник по вычислительным методам статистики. М.: Финансы и статистика. 1982. 344 с.
- Хижняк С.В., Пучкова Е.П. Математические методы в агроэкологии и биологии / Краснояр. гос. аграр. ун-т. Красноярск, 2019. 240 с.

References

- Al'ternarioz zerna yarovoj pshenicy i yachmenya v Zapadnoj Sibiri i Vostochnom Zaural'e / E.Yu. Toropova [i dr.] // Zaschita i karantin rastenij. 2015. № 1. S. 20–22.
- 2. Vliyanie `elementov tehnologii vozdelyvaniya na fitosanitarnoe sostoyanie posevov i urozhajnost' zernovyh kul'tur / *V.A. Polosina* [i dr.] // Vestnik NGAU. 2022. № 2. S. 51–58.
- Ivchenko V.K., Polosina V.A., Puchkova E.P. Influence of different soil tillage methods on the development of root rot in spring wheat // IOP Conf. Series: Earth and Environmental Science. 2020. Volume 548. P. 052073. DOI: 10.1088/1755-1315/548/5/052073.
- 4. Gannibal F.B. Al'ternarioz zerna sovremennyj vzglyad na problemu // Zaschita i karantin rastenij. 2014. № 6. S. 11–15.
- Kontaminaciya zerna v Zapadnoj Sibiri gribami *Alternaria* i ih mikotoksinami / A.S. Orina [i dr.] // Vestnik zaschity rastenij. 2021. № 104. S. 153–162.
- 6. Kononenko G.P., Piryazeva E.A., Burkin A.A. Producirovanie al'ternariola u populyacij melkosporovyh vidov Alternaria, associirovannyh s zernovymi kormami // Sel'skohozyajstvennaya biologiya. 2020. T. 55, № 3. S. 628–637.
- 7. Analiz prodovol'stvennogo zerna v Rossijskoj Federacii na zagryaznennost' shirokim spektrom mikotoksinov / *M.G. Kiseleva* [i dr.] // Sel'skohozyajstvennaya biologiya. 2021. T. 56, № 3. S. 559–577.
- 8. Gannibal F.B. Monitoring al'ternariozov sel'skohozyajstvennyh kul'tur i identifikaciya gribov roda *Alternaria*. SPb.: VIZR Rossel'hozakademii, 2011. 71 s.
- 9. Mikrobnye preparaty i regulyator rosta kak sredstva biologizacii zemledeliya / V.A. Semy-

- kin [i dr.] // Russian Journal of Agricultural and Socio-Economic Sciences. 2016. № 11 (59). S. 3–9.
- Monastyrskij O.A. Sostoyanie i perspektivy razvitiya biologicheskoj zaschity rastenij v Rossii // Zaschita i karantin rastenij. 2008. № 12. S. 41–44.
- Novikova I.I. Polifunkcional'nye biopreparaty dlya fitosanitarnoj optimizacii agro`ekosistem v biologicheskom zemledelii // Tehnologii i tehnicheskie sredstva mehanizirovannogo proizvodstva produkcii rastenievodstva i zhivotnovodstva. 2019. № 2 (99). S. 183–194.
- 12. Lankina E.P., Petrushkina S.A., Hizhnyak S.V. Vliyanie psihrotolerantnyh shtammov bakterijantagonistov UOZK2 i UOZK7 na strukturu bakterial'nogo soobschestva v rizosfere yarovoj pshenicy // Vestnik KrasGAU. 2014. № 8 (95). S. 84–87.

- 13. *Murodova S.S., Davranov K.D.* Kompleksnye mikrobnye preparaty. Primenenie v sel'skohozyajstvennoj praktike // Biotechnologia Acta. 2014. V. 7, № 6. S. 92–101.
- 14. Puchkova E.P., Hizhnyak S.V., Ivchenko V.K. Biotehnologiya v zaschite rastenij / Krasnoyar. gos. agrar. un-t. Krasnoyarsk, 2021. 144 s.
- GOST 12044-93. Mezhgosudarstvennyj standart. Semena sel'skohozyajstvennyh kul'tur. Metody opredeleniya zarazhennosti boleznyami. M., 1993. URL: https://standartgost.ru (data obrascheniya: 03.09.2023).
- Pollard Dzh. Spravochnik po vychislitel'nym metodam statistiki. M.: Finansy i statistika, 1982. 344 c.
- 17. Hizhnyak S.V., Puchkova E.P. Matematicheskie metody v agro`ekologii i biologii / Krasnoyar. gos. agrar. un-t. Krasnoyarsk, 2019. 240 s.

Статья принята к публикации 05.02.2024 / The article accepted for publication 05.02.2024.

Информация об авторах:

Елена Петровна Пучкова¹, доцент кафедры общего земледелия и защиты растений, кандидат биологических наук, доцент

Анастасия Вячеславовна Алексеева², магистрант второго курса

Information about the authors:

Elena Petrovna Puchkova¹, Associate Professor at the Department of General Agriculture and Plant Protection, Candidate of Biological Sciences, Docent

Anastasia Vyacheslavovna Alekseeva², second year Master student