Часть вторая

Теоретические основы построения чертежа

Глава 7. Изображение линий на чертежах

 

Глава 7

Образование линий
Комплексные чертежи прямых линий
Расположение прямой относительно плоскостей проекций
Взаимное расположение двух прямых
Определение натуральной величины отрезка прямой линии
Кривые линии
Взаимное расположение точки и линии
Вопросы

§ 41. Взаимное расположение двух прямых

Две прямые пространства могут иметь различное расположение (рис. 74). Они могут совпадать а ≡ b, быть параллельными с ׀׀ d, пересекаться m ∩ n и скрещиваться (k°/l).

Рис. 74

Если две прямые параллельны, то на комплексном чертеже (рис. 75, а) их одноименные проекции параллельны.

Рис. 75, a

Если две прямые пересекаются в некоторой точке М, то проекции этой точки должны принадлежать одноименным проекциям прямых, т. е. точки пересечения одноименных проекций пересекающихся прямых должны лежать на одной линии связи (рис. 75, б):

Рис. 75, б

Если две прямые скрещиваются, то их одноименные проекции могут пересекаться в точках, не лежащих на одной линии связи (рис. 75, в):

Рис. 75, в

A1 (11) - горизонтально конкурирующие точки;

B2 (22) - фронтально конкурирующие точки.

В другом случае одна пара проекций будет пересекаться, а вторая может быть параллельными прямыми (рис. 75, г):

Рис. 75, г

Следует обратить внимание на особые случаи определения взаимного расположения двух прямых в пространстве. Если одна из них (рис. 76, а) или обе (рис. 76, 6) окажутся профильными прямыми, то для определения взаимного расположения их необходимо построить третью, профильную проекцию этих прямых.

Если рассматривать рис. 76, а, можно ошибочно сделать предположение, что прямые АВ и CD пересекаются. Однако если построить профильные проекции этих прямых, станет видно, что они скрещиваются, так как точки 1 и 2 не совпадают, а являются фронтально конкурирующими точками.

Рис. 76, a

Рассматривая рис. 76, б,можно ошибочно предположить, что прямые АВ и CD параллельны. Но после построения их профильных проекций увидим, что они скрещиваются, так как на этой плоскости проекции их пересекаются.

Рис. 76, б

Две прямые, параллельные или пересекающиеся, могут иметь общую проецирующую плоскость (рис. 77, а).Тогда их изображения на соответствующую плоскость проекций совпадут. Такие прямые называют конкурирующими.

Рис. 77, а

Прямые а и b горизонтально конкурирующие, имеют общую горизонтально проецирующую плоскость (рис. 77, б).

Рис. 77, б

Прямые с и d (рис. 77, в) - фронтально конкурирующие, имеют общую фронтально проецирующую плоскость.

Рис. 77, в



 

Инженерная графика

 

© Красноярский государственный аграрный университет
© Управление информационных технологий
© Кафедра Технологии машиностроения