Геохимия биосферы

электронный учебно-методический комплекс

Модуль 2. Миграции химических элементов в биосфере
и геохимические барьеры

Тема 2.1. ОБЩИЕ ЗАКОНОМЕРНОСТИ МИГРАЦИИ
ХИМИЧЕСКИХ ЭЛЕМЕНТОВ

2.1.1. Среда миграции

2.1.2. Факторы миграции

2.1.3. Миграция элементов в зоне гипергенеза

2.1.4. Виды миграции

Миграция - это процесс перемещения химических элементов в пространстве и во времени, приводящий к их концентрации или рассеянию.

2.1.1. Среда миграции

Среда миграции может быть твёрдой (диффузия), жидкой (истинные и коллоидные растворы, расплавы, взвеси или суспензии) или газообразной (газовые смеси, взвеси, дымы – смесь газа и твердых частиц, аэрозоли, туманы – смесь газа и частиц жидкости, флюидизаты).

Поэтому давайте вспомним что представляют собой истинные и, особенно, коллоидные растворы, которые нередко возникают в гипергенных условиях. Кроме того, геохимия биосферы – это прежде всего геохимия реакций, происходящих в присутствии воды. Вы уже знаете из предыдущих лекций (лекция 3), что вода по целому ряду аномальных свойств никоим образом не может быть отнесена к обычным жидкостям.

Очень многие химические соединения хорошо растворимы в воде и миграция входящих в их состав элементов происходит в ионной форме (K, Na, Cl и др.), поэтому здесь необходимо особо остановиться на необычных свойствах воды как растворителя. Никакая другая жидкость не может сравниться с водой ни по числу веществ, которые могут в ней растворяться, ни по количеству вещества, которое она может удерживать в растворе. Объяснение этих замечательных свойств следует искать в структуре воды, о которой мы говорили ранее (лекция 3). Вы помните, что каждая молекула воды является миниатюрным диполем. Важным следствием дипольной природы молекул воды является ее очень высокая диэлектрическая постоянная – 80. Высокая диэлектрическая проницаемость как раз и объясняет активность воды как растворителя ионных соединений. Это связано с тем. Что силы притяжения ионов друг к другу уменьшаются пропорционально диэлектрической проницаемости среды, а растворение ионных соединений не что иное, как разрыв ионов, составляющих молекулу растворяемого вещества молекулами растворителя. В растворе катионы притягивают отрицательные полюсы ближайших диполей молекул воды, а анионы – положительные полюсы диполей. Этот процесс, как Вам известно из курса химии, называется гидратацией. Число молекул воды, окружающих каждый ион напрямую зависит не только от размеров этого иона, но и от плотности заряда на его поверхности. То есть гидратация иона возрастает с увеличением его заряда (Z) и убывает с увеличением его радиуса (r). Величина Z/r, называемая ионным потенциалом, определяет не только гидратацию данного иона, но и многие другие его свойства в водных растворах. По существу, ионные потенциалы являются мерой электроотрицательности, т.к. - чем меньше радиус положительного иона и чем больше его заряд, тем более ярко выражены кислотные свойства соответствующего окисла. И, наоборот, чем больше радиус и чем меньше заряд, тем сильнее соответствующее основание. Положительный заряд поверхности иона отталкивает протоны, входящие в состав молекул воды, координированных вокруг него. Если это отталкивание достаточно сильно, некоторые из протонов могут отрываться от молекул воды, в результате чего заряд центрального иона нейтрализуется образовавшимися гидроксильными группами. В результате – может выпадать в осадок нерастворимая гидроокись.

В истинных растворах элементы присутствуют либо в виде отдельных ионов, либо входят в состав растворимых комплексных ионов. Вам должно быть известно, что на растворимость тех или иных соединений существенно влияют и такие параметры природных вод как их общая минерализация, ионный состав, кислотность-щелочность, окислительно-восстановительный потенциал. Все эти рассмотренные нами геохимические параметры вод в первую очередь определяют миграцию химических элементов в ионной форме. Но в водной среде возможны и иные формы физико-химической миграции элементов. Одна из таких форм – миграция в коллоидных растворах.

Процесс образования истинных растворов достаточно подробно рассматривается в курсе химии, поэтому несколько подробнее остановимся на свойствах коллоидных систем, изучению которых уделяется явно недостаточное внимание в школьном курсе химии.

Коллоидным является такое состояние дисперсной системы, в которой размер диспергированных частиц колеблется приблизительно от 10-3 до 10-6 мм. Нельзя провести четкой границы между истинными и коллоидными растворами: коллоидные растворы, с одной стороны, переходят в истинные, а с другой – в суспензии. Степень их диспергированности такова, что частицы нельзя различить в световом микроскопе, но они крупнее молекул, т.е коллоидные частицы обычно мультимолекулярны (состоят из многих молекул). Коолоидные частицы (дисперсная фаза) разделены дисперсионной средой и в целом составляют коллоидную систему. Существует большое количество разнообразных типов коллоидных систем: твердое – газ (дымы), жидкость-газ (туманы), жидкость-жидкость (эмульсии), твердое-жидкость, т.е. коллоидные растворы (золи, гели и пасты). Жидкость в природныхз коллоидных системах обычно представлена водой.

Коллоидные растворы представляют собой жидкие системы, состоящие из жидкости и свободно (в процессе броуновского движения) передвигающихся в ней частичек дисперсной фазы – мицелл. Мицеллы – это не ионизированные атомы, и даже не отдельные недиссоциированные молекулы, а агрегаты из большого числа недиссоциированных молекул. С окружающей их жидкостью (дисперсионной средой) они имеют физические поверхности раздела. В зависимости от соотношения твердой и жидкой фаз коллоидные растворы подразделяются на золи, гели и пасты. Золи представляют собой системы, похожие по своим физическим свойствам на жидкости: они обладают большой текучестью и сравнительно небольшой вязкостью. Для гелей характерна повышенная вязкость. Пасты представляют собой системы, в которых концентрация твердых частиц столь высока, что они заполняют собой почти весь объем системы. Коллоидные растворы могут быть получены двумя способами: при дроблении более грубых частиц до коллоидных размеров или, напротив, путем объединения более мелких частиц (атомов, молекул или ионов). Большинство природных коллоидов, по-видимому, образуется вторым способом.

Есть обширная группа химических элементов, способность которых к миграции в ионной форме ограничена. Это так называемые элементы-гидролизанты – они в растворах легко вступают в реакции гидролиза и выпадают в осадок. Это Fe, Mn, Al, Ti, Sn, Zr, Cr, W, Mo и др. Большей частью они мигрируют в зоне гипергенеза в форме коллоидных растворов. Их растворимость в коллоидной форме в десятки, сотни, иногда и в тысячи раз превышает растворимость в форме истинных (ионных) растворов.

Коллоидные частицы электрически заряжены. Происхождение заряда двояко: либо адсорбция ионов из раствора, либо прямая ионизация вещества частицы. Некоторые коллоиды, например, гидроокись железа, заряжаются положительно или отрицательно в зависимости от среды, в которой они образуются. Для наиболее важных коллоидов характерен заряд:

  • Положительные коллоиды – гидроокись алюминия, гидроокись трехвалентного железа, гидроокись хрома. Гидрат двуокиси тория, гидрат двуокиси титана, гидрат двуокиси циркония;
  • Отрицательные коллоиды – кремнезем, гидроокись двухвалентного железа, гидрат пятиокиси ванадия, гидрат двуокиси марганца, гуминовые коллоиды, сульфидные золи.

Коллоидное состояние всегда метастабильно. Являясь гетерогенной системой, коллоидный раствор характеризуется агрегатной неустойчивостью. Им присуща тенденция к уменьшению свободной энергии мицелл, которая реализуется путём их слипания и укрупнения. Такой процесс называется коагуляцией коллоидного раствора. Результат коагуляции – выделение из коллоидного раствора в качестве самостоятельных фаз гелей (студенистых масс, в которых слипшиеся мицеллы образуют пространственную «сетку»). Далее может следовать постепенная потеря этими студенистыми массами содержащейся в них воды, «высыхание».

Причины, вызывающие ускорение процесса коагуляции, сложны и многообразны и могут быть связаны с любыми изменениями физико-химических параметров среды. Одной из наиболее распространённых причин коагуляции коллоидов в зоне гипергенеза является смешение коллоидных растворов с истинными, которые действуют на них как электролиты. Поэтому средой активной миграции коллоидов обычно являются слабо минерализованные поверхностные и грунтовые воды (пресные и ультрапресные), а зоной массового осаждения коллоидных частиц – устья рек, т.к. значительная часть коллоидов быстро коагулирует в морской воде. Область широчайшего распространения коллоидов – это почвы, где значительная часть минеральных веществ содержится именно в этой форме.

2.1.2. Факторы миграции

Факторы миграции подразделяются на внутренние и внешние.

Внутренние факторы миграции определяются строением атомов. От них зависит способность элементов давать летучие, растворимые или инертные формы. К ним относятся:

  • электростатические свойства ионов:
    • ионный потенциал – отношение заряда иона к его радиусу,
    • энергетический коэффициент ионов);
  • свойства связи соединений, включая строение кристаллической решетки (определяют способность соединения противостоять разрушению);
  • химические свойства соединений (это уже с учётом условий среды – например, более высокой устойчивости кислородных соединений в большинстве гипергенных обстановок);
  • гравитационные свойства атомов (проявляются при кристаллизации, седиментации, выветривании);
  • радиоактивные свойства.

Внешние факторы миграции - ландшафтно-геохимические условия, определяющие поведение элементов в различных химических (окислительно-восстановительных, щёлочно-кислотных) обстановках:

  • температура (в целом повышение ускоряет физико-химическую миграцию, а для некоторых видов миграции, например, биогенной, нужны определённые диапазоны температур);
  • давление (повышение давления в равновесной системе приводит к изменению системы в сторону уменьшения объёма);
  • степень электролитической диссоциации (зависит от соотношения свойств растворителя и растворяемого вещества, температуры раствора и его концентрации);
  • концентрация водородных ионов, определяющая кислотность-щёлочность среды (pH);
  • окислительно-восстановительный потенциал;
  • поверхностные силы коллоидных систем (определяют масштабы селективной сорбционности);
  • комплексы типоморфных ионов в почвах и водах (что такое типоморфные ионы – будет рассмотрено далее);
  • геоморфологические факторы (рельеф);
  • радиационные характеристики среды;
  • жизнедеятельность организмов и техногенез – наиболее сложные по механизму влияния.

Результат миграции – это рассеяние и концентрация химических элементов.

2.1.3. Миграция элементов в зоне гипергенеза

В гипергенных условиях ведущая роль принадлежит миграции в газовой и водной средах.

С учётом этого А.И. Перельманом составлена ещё одна геохимическая классификация элементов, в которой элементы классифицируются по особенностям их миграции в гипергенных условиях. (рис. 2.1.1).

Рис. 2.1.1. Геохимическая классификация А.И. Перельмана по особенностям
миграции химических элементов в зоне гипергенеза

В соответствии с этой классификацией химические элементы подразделяются на воздушные и водные мигранты

Среди воздушных мигрантов, в свою очередь, выделяются:

  • активные, образующие соединения (O, H, C, N, I);
  • пассивные (все инертные газы).

Водные мигранты – подразделяются, с одной стороны - по степени подвижности и, кроме того, на катионогенные и анионогенные элементы, т.е. их классификация имеет табличную (матричную) форму. Подвижность элементов определяется коэффициентом водной миграции (отношение содержания химического элемента в минеральном остатке воды к его содержанию во вмещающих породах).

KX = (MX/anx)100,

где MX – содержание элемента в воде, а – минерализация воды,
 nx- содержание элемента во вмещающей породе.

Дополнительные характеристики – постоянная или переменная валентность, подвижность или же способность осаждаться при различном типе химизма среды, интенсивность миграции в растворах с различными щелочно-кислотными условиями, интенсивность миграции с органическими комплексами. В дополнение ко всему элементы независимо от других признаков подразделяются по роли биогенного накопления в их миграции (существенная или несущественная). Так что в целом классификация стройная, но достаточно сложная.

2.1.4. Виды миграции

Разнообразие миграции – определяется числом форм, в которых переносится элемент. Для химически сходных элементов разнообразнее миграция того из них, у которого кларк выше.

Примеры для минералов с кларками одного порядка: S – многовалентна (0, -2, +4, +6), может входить в состав разнообразных соединений (сульфиды, сульфаты, органические соединения), образует 369 минеральных видов. Cl – одновалентен, образует 96 минералов. У Mo – 15 минеральных видов, Hf – 0. Последний пример еще раз отражает различие между редкими и рассеянными элементами.

Виды миграции (или формы движения материи) – выделяются в соответствии с различными уровнями организации вещества. Выделяются механическая, физико-химическая, биогенная и техногенная миграция.

  1. Механическая: перенос без преобразования вещественного состава. Определяется размерами минеральных частиц, их плотностью, скоростью движения среды, являющейся агентом переноса (водного потока, ветра и т.д.).
  2. Физико-химическая: подчиняется физическим и химическим законам. Процессы диффузии, растворения, осаждения, плавления, кристаллизации, сорбции, десорбции и т.д. Подвиды – ионная миграция (в растворах), коллоидная, газовая и др.
  3. Биогенная: определяется деятельностью организмов. Взаимодействие между живым веществом и инертной материей Земли происходит в форме массообмена химических элементов между живыми организмами и окружающей средой. Именно процессы массобмена элементов объективно характеризуют геохимическую деятельность организмов. Подобные закономерные процессы миграции химических элементов, осуществляемые не под воздействием геологических факторов, а в результате жизнедеятельности организмов были названы В.И. Вернадским биогеохимическими. Здесь учёт лишь химических свойств элементов (валентности, ионных радиусов и др.) недостаточен. Здесь значительно большую роль приобретают информационные процессы (иногда не вполне корректно утверждают, что они только на этом уровне и появляются; но Вы уже знаете, что информация и управление существуют на всех уровнях организации вещества, только на добиологических уровнях их сложность и значение несравнимо ниже).
  4. Техногенная: связана с деятельностью человека. Освоение сырьевых ресурсов, хозяйственное использование сырья, значительные по масштабам перемещения вещества, создание веществ, не существующих в природе.

© ФГОУ ВПО "Красноярский государственный аграрный университет"

© Отдел информационных образовательных технологий