Тема №5 Перпендикулярность прямой и плоскости
1. Свойство прямого угла
2. Условие перпендикулярности прямой и плоскости
3. Условие перпендикулярности плоскостей
4. Способ прямоугольного треугольника
Контрольные вопросы
Контрольные задания по теме: Рабочая тетрадь задача 44, задача 45
1. Свойство прямого угла
Построение взаимно перпендикулярных прямых и плоскостей является важной графической операцией при решении метрических задач.
Построение перпендикуляра к прямой или плоскости основывается на свойстве прямого угла, которое формулируется следующим образом: если одна из сторон прямого угла параллельна плоскости проекций, а другая не перпендикулярна ей, то угол проецируется в натуральную величину на эту плоскость.
 Рисунок 28
Сторона ВС прямого угла АВС, изображенного на рисунке 28, параллельна плоскости П1. Следовательно, проекция угла АВС на эту плоскость будет представлять прямой угол А1В1С1=90.
2. Условие перпендикулярности прямой и плоскости
Прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости. При построении перпендикуляра из множества прямых принадлежащих плоскости, выбирают прямые уровня - горизонталь и фронталь. В этом случае горизонтальную проекцию перпендикуляра проводят перпендикулярно горизонтали, а фронтальную -перпендикулярно фронтали. На примере, изображенном на рисунке 29, показано построение перпендикуляра к плоскости, заданной треугольником АВС, из точки К. Для этого сначала проводим горизонталь и фронталь в плоскости. Затем из фронтальной проекции точки К проводим перпендикуляр к фронтальной проекции фронтали, а из горизонтальной проекции точки – перпендикуляр к горизонтальной проекции горизонтали. Затем строим точку пересечения данного перпендикуляра с плоскостью при помощи вспомогательной секущей плоскости Σ. Искомая точка – F. Таким образом, полученный отрезок КF является перпендикуляром к плоскости АВС.
 Рисунок 29
На рисунке 29 изображено построение перпендикуляра КF к плоскости АВС.
3. Условие перпендикулярности плоскостей
Две плоскости перпендикулярны, если прямая, лежащая в одной плоскости, перпендикулярна двум пересекающимся прямым другой плоскости. Построение плоскости перпендикулярной данной плоскости АВС показано на рисунке 30. Через точку М проводится прямая МN, перпендикулярная плоскости АВС. Горизонтальная проекция этой прямой перпендикулярна АС, так как АС является горизонталью, а фронтальная проекция перпендикулярна АВ, так как АВ – фронталь. Затем через точку М проводится произвольная прямая EF. Таким образом, плоскость перпендикулярна АВС и задана двумя пересекающимися прямыми EF и MN.
 Рисунок 30
4. Способ прямоугольного треугольника
Этот способ применяется для определения натуральных величин отрезков общего положения, а также углов наклона их к плоскостям проекций. Для того, чтобы определить натуральную величину отрезка этим способом, необходимо достроить прямоугольный треугольник к одной из проекций отрезка. Другим катетом будет являться разность высот или глубин конечных точек отрезка, а гипотенуза – натуральной величиной.
Рассмотрим пример: на рисунке 31 дан отрезок АВ общего положения. Требуется определить его натуральную величину и углы его наклона к фронтальной и горизонтальной плоскостям проекций.
Проводим перпендикуляр к одному из концов отрезка на горизонтальной плоскости. Откладываем на нем разность высот (ZA-ZB) концов отрезка и достраиваем прямоугольный треугольник. Гипотенуза его является натуральной величиной отрезка, а угол между натуральной величиной и проекцией отрезка – натуральной величиной угла наклона отрезка к плоскости П1. Порядок построений на фронтальной плоскости тот же самый. По перпендикуляру откладываем разность глубин концов отрезка (YA-YB). Полученный угол между натуральной величиной отрезка и его фронтальной проекцией – это угол наклона отрезка к плоскости П2.
 Рисунок 31
Контрольные вопросы
1. Сформулируйте теорему о свойстве прямого угла.
2. В каком случае прямая перпендикулярна плоскости?
3. Сколько прямых и сколько плоскостей, перпендикулярных данной плоскости, можно провести через точку пространства?
4. Для чего применяется способ прямоугольного треугольника?
5. Как при помощи этого способа определить угол наклона отрезка общего положения к горизонтальной плоскости проекций?
|